272 research outputs found

    Librarians' Roles in Evidence Based Dentistry Education in the U.S. and Canada

    Get PDF
    As the dental profession continues to adopt Evidence Based Dentistry (EBD), dental librarians are facing unique opportunities and challenges in their support of EBD education. This study describes the current roles of dental librarians in EBD education including their perceptions of EBD and barriers to their involvement. A web-based survey was distributed to the dental librarians and 71% responded. The results showed that the majority of dental librarians in North America are playing multiple and diverse roles in EBD education. The most frequently cited barrier to their involvement is the low level of interest from the dental faculty/student/school. Most dental librarians felt competent in supporting EBD, although continuing education needs in both EBD and teaching skills were pointed out. In general, dental librarians are eager to support EBD education and they recognize the issues regarding EBD adoption faced by the dental profession

    Physiopathology of osteoclast in bone

    Get PDF
    Bone is constantly remodeled by osteoclastic bone resorption and osteoblastic bone formation. Abnormal remodeling can result in bone mass change; bone loss is implicated in a number of bone diseases, representing an increase in bone resorption relative to formation. Therefore, an understanding of osteoclast biology is important to demystify the pathogenesis of bone diseases and to develop treatment strategies. Osteoclasts are formed by fusion of hematopoietic monocyte/macrophage lineage cells, in which osteoblasts/stromal cells play a central role by producing macrophage-colony stimulating factor and receptor activator of nuclear factor Îș B ligand. Characterization of osteoclastogenesis has provided new insight into our understanding of bone diseases with excessive bone resorption. Moreover, anti-resorptive drugs, bisphosphonates, have been developed to target osteoclasts and their function. Additionally, a better understanding of the interactions of fluoride between osteoclasts may help harness the desirable effects of fluoride on bone while limiting its undesirable effects

    Seasonal dynamics of trace elements in sediment and seagrass tissues in the largest Zostera japonica habitat, the Yellow River Estuary, northern China

    Get PDF
    Trace element accumulation is an anthropogenic threat to seagrass ecosystems, which in turn may affect the health of humans who depend on these ecosystems. Trace element accumulation in seagrass meadows may vary temporally due to, e.g., seasonal patterns in sediment discharge from upstream areas. In addition, when several trace elements are present in sufficiently high concentrations, the risk of seagrass loss due to the cumulative impact of these trace elements is increased. To assess the seasonal variation and cumulative risk of trace element contamination to seagrass meadows, trace element (As, Cd, Cr, Cu, Pb, Hg, Mn and Zn) levels in surface sediment and seagrass tissues were measured in the largest Chinese Zostera japonica habitat, located in the Yellow River Estuary, at three sites and three seasons (fall, spring and summer) in 2014–2015. In all three seasons, trace element accumulation in the sediment exceeded background levels for Cd and Hg. Cumulative risk to Z. japonica habitat in the Yellow River Estuary, from all trace elements together, was assessed as “moderate” in all three seasons examined. Bioaccumulation of trace elements by seagrass tissues was highly variable between seasons and between above-ground and below-ground biomass. The variation in trace element concentration of seagrass tissues was much higher than the variation in trace element concentration of the sediment. In addition, for trace elements which tended to accumulate more in above-ground biomass than below-ground biomass (Cd and Mn), the ratio of above-ground to below-ground trace element concentration peaked at times corresponding to high water discharge and high sediment loads in the Yellow River Estuary. Overall, our results suggest that trace element accumulation in the sediment may not vary between seasons, but bioaccumulation in seagrass tissues is highly variable and may respond directly to trace elements in the water column

    Which Genes in a Typical Intertidal Seagrass (Zostera japonica) Indicate Copper-, Lead-, and Cadmium Pollution?

    Get PDF
    Healthy seagrasses are considered a prime indicator of estuarine and coastal ecosystem function; however, as the only group of flowering plants recolonizing the sea, seagrasses are frequently exposed to anthropogenic heavy metal pollutants, which are associated with high levels of molecular damage. To determine whether biologically relevant concentrations of heavy metals cause systematic alterations in RNA expression patterns, we performed a gene expression study using transcriptome analyses (RNA-seq). We exposed the typical intertidal seagrass Zostera japonica to 0 and 50 ÎŒM of copper (Cu), lead (Pb), and cadmium (Cd) under laboratory conditions. A total of 18,266 differentially expressed genes (DEGs) were identified, of which 2001 co-expressed genes directly related by Cu, Pb, and Cd stress. We also examined the effects of short-term heavy metal Cu, Pb, and Cd pulses on the accumulation of metals in Z. japonica and showed metal concentrations were higher in the shoots than in roots. Twelve differentially expressed genes were further analyzed for expression differences using real-time quantitative polymerase chain reaction (RT-qPCR). Our data suggest that as coastal seawater pollution worsens, the sensitive genes identified in this study may be useful biomarkers of sublethal effects and provide fundamental information for Z. japonica resistant gene engineering

    Designing a novel high-throughput AlphaLISA assay to quantify plasma NHERF1 as a non-small cell lung cancer biomarker

    Get PDF
    NHERF1 might play a significant role in biological processes including oncogenic transformation and metastasis. Owing to the lack of highly sensitive and quantitative methods of NHERF1 in human plasma, there have been few reports on the plasma levels of NHERF1 and its correlation with cancer. Here, a novel amplified luminescent proximity homogeneous immunoassay (AlphaLISA) has been developed and validated for the quantification of NHERF1 in human plasma. This assay was based on an AlphaScreen detection technique with two different anti-NHERF1 antibodies coupled to donor and acceptor beads, respectively. The developed AlphaLISA assay was further optimized and validated in terms of linearity, limit of detection (LOD), limit of quantification (LOQ), precision, recovery, selectivity and interferences. The linear range of NHERF1 in human plasma was 5.00–100 ng mL−1, with an LOD of 2.00 ng mL−1. This AlphaLISA assay has been successfully applied to the quantification of NHERF1 in the plasma from 75 patients with non-small cell lung cancer (NSCLC). The levels of NHERF1 protein in plasma from patients with NSCLC were significantly higher than those in the healthy group (p = 0.0004). Based on the evaluation of the ROC curves, measuring the content of NHERF1 in human plasma could provide a potential diagnostic tool for NSCLC

    Loss of PDZK1 expression activates PI3K/AKT signaling via PTEN phosphorylation in gastric cancer

    Get PDF
    Phosphorylation of PTEN plays an important role in carcinogenesis and progression of gastric cancer. However, the underlying mechanism of PTEN phosphorylation regulation remains largely elusive. In the present study, PDZK1 was identified as a novel binding protein of PTEN by association of PTEN through its carboxyl terminus and PDZ domains of PDZK1. By direct interaction with PTEN, PDZK1 inhibited the phosphorylation of PTEN at S380/T382/T383 cluster and further enhanced the capacity of PTEN to suppress PI3K/AKT activation. PDZK1 suppressed gastric cancer cell proliferation by diminishing PI3K/AKT activation via inhibition of PTEN phosphorylation in vitro and in vivo. The expression of PDZK1 was frequently downregulated in gastric cancer specimens and correlated with progression and poor prognosis of gastric cancer patients. Downregulation of PDZK1 was associated with PTEN inactivation, AKT signaling and cell proliferation activation in clinical specimens. Thus, low levels of PDZK1 in gastric cancer specimens lead to increase proliferation of gastric cancer cells via phosphorylation of PTEN at the S380/T382/T383 cluster and constitutively activation of PI3K/AKT signaling, which results in poor prognosis of gastric cancer patients

    Vertical patterns of chlorophyll a in the euphotic layer are related to mesoscale eddies in the South China Sea

    Get PDF
    Phytoplankton closely connects with the hydrodynamics and biogeochemical environment of the ocean. While research focusing on both the physiochemical factors and hydrodynamics regulating phytoplankton has already been conducted, the coupling mechanism between mesoscale eddies and the vertical distribution of phyto plankton in the South China Sea (SCS) is still not well understood. Here, phytoplankton was studied under one weak-cold and two warm eddies along the 18°N transect in the SCS. The results show that the vertical distribution of chlorophyll (chl-a) presented a similar pattern at all four sampling stations. The mixed layer is less than 50 m. It is the same as the meridional salinity gradients that may be distinguished above a depth of 60 m. The subsurface chlorophyll maximum at the edge of a warm (WI) and cold eddy (CI) at E413 and E411 was shallower than that at the edge of a warm eddy (WII) at E407 and E409, indicating that temperature and salinity may be the important driving factors. On the whole, mesoscale eddies had a significant influence on the vertical pattern of chl-a in the SCS during the study period
    • 

    corecore