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Phytoplankton closely connects with the hydrodynamics and biogeochemical

environment of the ocean. While research focusing on both the

physiochemical factors and hydrodynamics regulating phytoplankton has

already been conducted, the coupling mechanism between mesoscale

eddies and the vertical distribution of phyto

plankton in the South China Sea (SCS) is still not well understood. Here,

phytoplankton was studied under one weak-cold and two warm eddies

along the 18°N transect in the SCS. The results show that the vertical

distribution of chlorophyll (chl-a) presented a similar pattern at all four

sampling stations. The mixed layer is less than 50 m. It is the same as the

meridional salinity gradients that may be distinguished above a depth of 60 m.

The subsurface chlorophyll maximum at the edge of a warm (WI) and cold eddy

(CI) at E413 and E411 was shallower than that at the edge of a warm eddy (WII)

at E407 and E409, indicating that temperature and salinity may be the

important driving factors. On the whole, mesoscale eddies had a significant

influence on the vertical pattern of chl-a in the SCS during the study period.
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South China Sea, phytoplankton, subsurface chlorophyll maximum, cold eddy,
warm eddy
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Introduction

Phytoplankton is considered the most important marine

primary producer at the bottom of the food web. They produce

about half of the oxygen in the atmosphere, by photosynthesis,

which is equal to the amount of oxygen produced by all land

plants per year. During the period 1998–2018, global marine

primary production ranged from 38.8 to 42.1 Gt C/year (Kulk

et al., 2020). It is estimated that diatoms account for 45% of

marine primary productivity (Mann, 1999). Phytoplankton has

an important influence on marine biogeochemical cycles.

Generally, phytoplankton is affected by the environment of the

water column, including its physical dynamics, chemical

elements, and biological activities. In coastal ecosystems,

phytoplankton succession is governed largely by upwelling

events, indicating the importance of mesoscale variability for

the functioning of the ecosystem in the southern Benguela

upwelling system (Burger et al., 2020). In the southeast Gulf of

Mexico, upwelling can enhance phytoplankton growth and

change its composition, resulting in phytoplankton blooms

(Medina-Gomez et al., 2019).

In the open sea, short-term changes in phytoplankton

communities are affected by hydrodynamics such as mesoscale

eddies. Biochemical elements in cold eddies are brought to

shallower waters, while in warm eddies, they are sent to

deeper waters. For example, chlorophyll concentrations in cold

eddies are higher than in warm eddies (depth > 70 m) in the

western part of the North Pacific (Chang et al., 2017). The

maximum chlorophyll a (chl-a) layer in an eddy center rises to

form a dome structure, although the total chl-a biomass does not

increase significantly (Wang et al., 2016). Cold and warm eddies

have different influences on phytoplankton and nutrients. The

cyclonic eddy characterized by enhanced nutrients and

chlorophyll is mostly restricted to the subsurface waters

(Jyothibabu et al., 2015). In the western South China Sea

(SCS), total chl-a increases significantly in warm eddies but

does not change much at cold eddies (Zhong and Huang, 2013;

Xu et al., 2022). Nonetheless, in the southwestern Canada Basin,

the warm core eddy with high ammonium shelf water can

provide ammonium for the euphotic zone of the Basin and

maintain a 30% higher biomass of picophytoplankton (<2 mm)

than the surrounding waters (Nishino et al., 2011). In the SCS,

both upwelling and cold eddies are characterized by high

nutrient levels and chlorophyll levels, and low levels of

dissolved oxygen, while warm eddies are just the opposite

(Ning et al., 2004). High dissolved oxygen (DO) content is

moved from the upper layer to the lower layer by warm eddies

in the SCS (Liu et al., 2012). However, very few studies attempt

to examine the influence of cold and warm eddies on the vertical

distribution of phytoplankton maxima.

A cold core eddy is formed intermittently throughout the

year due to the Kuroshio intrusion, which may have an
Frontiers in Marine Science 02
important impact on the biogeochemical cycle in the SCS

(Chen et al., 2007; Sun et al., 2022). The cold eddy

significantly increases the primary productivity at the 25-m

layer, which is mainly affected by the nutrients in the western

part of the SCS (Leng et al., 2016). The phytoplankton features

influenced by the different eddies are significantly different

(Huang et al., 2010). Lin et al. (2014) used satellite data to

discover that in the SCS, phytoplankton size classes change from

picoplankton to micro- and nanoplankton driven by cold eddies,

but the contribution of picoplankton to chlorophyll remained

almost unchanged. Mesoscale eddies did not significantly

influence the dominance of the dominant groups in the

western SCS (Zhong and Huang, 2013).

The SCS is a large, semienclosed marginal sea with several

straits that are connected to the Pacific and Indian oceans, and is

characterized by complex hydrodynamics and biogeochemistry.

In the northern SCS, phytoplankton in the summer is mainly

driven by upwelling and river plume processes (Xu et al., 2018).

Similarly, phytoplankton relatively responds to the

hydrodynamics of the SCS. In the present study, the vertical

distribution of phytoplankton caused by the combined action

between the warm and cold eddies is explained. In particular, we

explored whether the physical environment, including a

thermocline, is advantageous to the formation and

maintenance of chl-a at its maximum in the euphotic layer.
Materials and methods

Sampling and sample analysis

The research cruise was conducted from 15 September to 04

October 2004. During the cruise, temperatures and salinities

were obtained with a SeaBird model SBE9/11. Discrete water

samples (surface, 25, 50, 75, 100, 150, and 200 m) were collected

with GO-FLO bottles mounted on a rosette sampling assembly

(Whatman Company: General Oceanic). Seawater was filtered

through a GF/F filter (Whatman, 25 mm), and the filter paper

was wrapped in aluminum foil and stored at −20°C pending

analysis. Chl-a content was measured by fluorescence with a

Turner Design 10 fluorometer. The sampling stations of this

study, located at 18°N, were collected during the cruise from 23

to 25 September 2004 (Figure 1).
Data from remote sensing

Sea-level anomaly data (SLA) obtained from the TOPEX/

Poseidon and JASON altimeters (http://www.aviso.oceanobs.

com/) were used to estimate surface circulations. The SLA

data were used to estimate thermocline displacement. In an

ideal two-layer system, the depth of the upper layer (A) is D,
frontiersin.org
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with density r1 and temperature T1 , while a motionless lower

layer (B) has density r2=r1+ Dr and temperature T2 . Dr and Dh
are the density differences between A and B and the SLA,

respectively (Rebert et al . , 1985). The thermocline

displacement (DD) was calculated with Eq. (1).

DD =
Dhr1
Dr

(1)
Mixed layer and depth of the
thermocline top

Mixed layer depth (MLD) is the depth characterized by the

density gradient, and this gradient was sq = 0.1 unit m−1 (Tseng

et al., 2005). The top thermocline depth (TTD) was defined as

the depth above which the temperature is greater than the

surface temperature (the latter measured at 10 m depth)

minus 0.2°C.
Results

Physical background

Temperature and salinity
Both the salinity and temperature profiles of the transect at

18°N, from the surface to 200 m depth, are shown in Figure 2.

The surface salinity indicated that there was a high temperature

(~29.5°C) and low salinity (~33.4) at the transect stations (E405

and E407), which was in good agreement with the positive SLA

field. Above 50 m, there was low salinity and a high-temperature

tongue from about 114.5°E towards the east. The TTD along the

transect from westward to eastward (from E413 to E407)

deepened. The characteristic of a warm core eddy is that there
Frontiers in Marine Science 03
is a deep thermocline in the center and the depth of the

thermocline around the eddy fringe is very shallow.

The isotherms show how the warm surface seawater (above

28°C) moved eastward, generating a meridional temperature

gradient. Meridional salinity gradients may be distinguished

above a depth of 60 m (Figure 2). The maximum salinity (s =

34.6) in tropical waters reached ~120 m. It is the intermediate

water circulation from the west to the east in SCS.

Mixed layer and euphotic layer depth
MLD is less than 50 m in the upper layer in E411 and E413

(Figure 3). That is to say, MLD is the same water layer in E411

and E413, and the water layer at less than 50 m depth has the

same temperature and salinity. On the other hand, chemical and

biological parameters may show a small difference.

Sea surface height anomaly
The SLA showed that there were two warm eddies and a

weak cold eddy in the sampling transect before and during the

study period. The sampling stations located at the warm eddy

edge or inside it (E413 located in c; and E407 and E409 located in

WII) have high values of SLA, while E11 located in the cold eddy

(CI) has low values of SLA (Figure 4). The mesoscale eddy

changed over time. Interestingly, the WI was distinct from 28

August to 22 September and then disappeared. In contrast, the

cold eddy (CI) became gradually stronger before and during the

sampling period.

Biological activities
The vertical distribution of chl-a at the sampling stations is

shown in Figure 5. The subsurface chlorophyll maximum, with

values between 0.1 and 0.3 mg m−3, varied from 50 to 150 m

(Figure 5). In addition, the chl-amaximum (0.3 mg m−3) at E407

was 50% higher than in the water of the cold eddy at E413 (0.2

mg m−3) above the euphotic zone (about 80 m).
FIGURE 1

Sampling stations in the northern South China Sea during the research cruise, 2004.
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Discussion

Chl-a content ranged from 0.10 to 0.30 mg m−3 in the SCS.

The chlorophyll maximum was 0.30 mg m−3 in the top 75 m of

E407 and 0.20 mg m−3 in the top 25 m of E413. Chl-a content

varied from 0.01 to 1.95 mg m−3 in the SCS (Ning et al., 2004).

The subsurface chlorophyll maximum, with values between 0.10

and 0.60 mg m−3, ranged from 50 to 100 m in the SCS.

Integrated phytoplankton biomass (chl-a) at four stations was

similar in the euphotic layer. These observations are similar to

those in a previous study (Ning et al., 2004). However, there are

differences between the edges of cold and warm eddies. The chl-

a maximum (~0.20 mg m−3) at the base of the surface mixed
Frontiers in Marine Science 04
layer (25 m) was found at the edge of the warm (WI) and cold

eddy (CI) at E413, while chl-a maxima (~0.30 mg m−3) at the

warm eddy edge were observed at E407 and E409, and deepened

to 75 m depth in that area (Figure 5). The chl-a maximum (0.24

± 0.60 mg m−3) at 75 m was found in the water of a warm eddy in

the western SCS (Zhong and Huang, 2013). The averaged water

column-integrated concentration of total chlorophyll inside the

eddy was similar to that outside the eddy, and an enhancement

of phytoplankton biomass and an increase in the range of the

depth of the chl-a maximum (DCM) layer were detected within

the eddy (Dai et al., 2020). The subsurface chlorophyll maxima

layers contained approximately 50% of the chl-a standing stock

in the water column, and the contribution increased to >70% for
BA

FIGURE 2

Vertical distributions of temperature (A) and salinity (B) at different depths.
FIGURE 3

Mixed layer depth at the sampling stations.
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high-biomass areas, suggesting the biological importance of the

summer subsurface chlorophyll maxima in the shelf ecosystem

(Zhuang et al., 2020).

What made the difference? The explanation may be physical

processes. From the SLA figures, the cold eddy began to form for

several days at the stations (E411 and E413). The isotherm at the
Frontiers in Marine Science 05
depth range of 60 to 200 m at E411 was shallower than at E413

and other stations (Figure 5), by about 10 m, and a warm eddy

may have played a role in determining this scenario. The

research stations (E407 and E409) were located at the edge of

the warm eddy shown in Figure 3. Thus, the alternating patches

of cold and warm eddies along 18°N can be further verified. The
BA

FIGURE 4

The 8-day mean SLA from AVISO. (A) Before the sampling period, from 28/08/2004 to 29/09/2004; (B) during the sampling period, 23/09/
2004 to 25/09/2004.
B

C D

E F

A

FIGURE 5

8-day mean SLA from AVISO (A–F) Before and after the sampling time: from 28/8/2004 to 29/9/2004; (B) the sampling time: 23-25/9/2004.
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altimetry data were used to estimate thermocline displacement.

Figure 3 indicates that the surface depression (Dh = −3 cm)

occurred before the period of sampling (23/09/2004). If

necessary, Dr = 2.3 kg m−3 was used in Eq. (1); DD was

20.5 m. Therefore, the thermocline displacement is similar to

the observed displacement at E407. Compared with E413, the

displacement inferred that the subsurface chlorophyll maximum

at E407 may deepen by about 20 m in the upper layer. According

to the above chl-a profile, the downward movement caused by

WII resulted in phytoplankton moving from the mixed layer to

the deep layer (Figure 5).

This interesting phenomenon was found in the East Sea

(Kim et al., 2012), the SCS, and the Indian Ocean where the

subsurface chlorophyll maximum was below the euphotic zone

(Thompson et al., 2007; Huang et al., 2010). Because there was a

significant difference between the warm (WII) and cold (CI)

eddies above the euphotic zone, phytoplankton might grow

under different physical conditions. Nutrients (nitrate and

phosphate) are depleted within the euphotic zone in the SCS

(Wong et al., 2007). Under this scenario, nutrients may be the

limiting factor for phytoplankton in the mixed layer. Warm

eddies could determine the distribution of nutrients in the

euphotic layer and regulate phytoplankton patterns in the

coastal, shelf, and open ocean ecosystem (Kim et al., 2012).

The uplift or downward movement of environmental factors

was accompanied by the cold or warm eddies, respectively. From

the SLA figures, there was about a 1-month time lag from 22

August to 23 September. There were two warm eddies (E413,

E407, and E409) and embryonic forms of a cold eddy (E411) at

the sampling stations before the sampling period. As time went

by, the E413 site was situated at the edge of the warm and cold

eddies (WI and CI), while E411 was sited at the edge of the cold

and warm eddies (CI and WII) during the sampling period.

Interestingly, the observed chl-a maximum layer at E413 (50 m)

was less than that at E407 and E409 (75 m), while it was also

found at E411 (75 m), where the cold eddy (CI) gradually

strengthened before and during the sampling period (Figure 5).
Conclusion

In this study, we provide field evidence for the vertical

distribution of chl-a being regulated by mesoscale eddies,

including the cold and warm eddies in the euphotic layer of the

SCS. Inside a warm eddy, the maximum depth of chl-a is deeper

than it is on the edge of such an eddy—the point of interaction

between the gradually vanishing warm eddy and slowly boosting

cold eddy. The occurrence of mesoscale eddies, confirmed by the

SLA satellite data and in situ measured temperature and salinity,

induced the vertical pattern of chl-a.

Interpretation of these findings concludes that the mesoscale

eddies have an important influence on the chemical parameters
Frontiers in Marine Science 06
and biological activities of the open sea. The water convergency

induced by a warm eddy causes downwards transport while the

water convergency induced by a cold eddy induces upwards

transport; therefore, the presence of phytoplankton and

nutrients in cold eddies is accomplished by the motion

associated with eddy-induced divergence (convergence). It is

the complicated interaction among different mesoscale eddies in

the open sea that creates the resulting biogeochemistry.
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