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CHAPTER I 

INTRODUCTION 

Molecular weight determination is one of the most fundamental 

measurements necessary for elucidation of the structure of biomolecules. Among 

the techniques, mass spectrometty has long been one of the best techniques for 

directly obtaining this information from very small quantities of material. 

Traditional mass spectrometty is carried out either with electron impact 

ionization, in which molecules are ionized with an energetic beam (70 e V) of 

electrons or with chemical ionization, in which volatilized molecules are ionized 

by reaction with ionic reagent gases. Both techniques required vaporization of 

neutral moieties followed by ionization. The vaporization process limits the 

application of mass spectrometty to analyses of small organic compounds. The 

main difficulties of classical mass spectrometty, if applied to large polar, 

nonvolatile, and thermal liable substances, have been sample volatilization and 

sample ionization. During the past decades, tremendous effort has been 

expended on applying mass spectrometty to very large molecule measurements 
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for biological and medical application. Several other volatilization and ionization 

techniques have been successful to varying degrees for molecular weight analysis 

of larger (up to m/z 5000-10,000 Da) molecules, such as fast atom bombardment 

(FAB) (Barber et al., 1981), secondary ion mass spectrometry (SIMS) (Mchugh, 

1975), field desorption (FD) (Becky, 1977), and plasma desorption (PD) 

(Macfarlane and Torgerson, 1976). Until the mid 1980s, it was believed that 

biomolecules larger than 10 kDa could not be ionized or volatilized to enable 

analysis by mass spectrometry. The breakthrough came with the introduction of 

electrospray ionization (ESI) (Meng et al., 1988) and matrix-assisted laser 

desorption ionization (MALDI) (Karas and Hillenkamp, 1988; Tanaka, et al., 

1988). These new mass spectrometric methods have enabled molecular weight 

analyses of biomolecules up to m/z 500,000 (Ehring et al., 1992) 

For example, in ESI, highly charged droplets are dispersed from a 

capillary in a strong electric field at atmospheric pressure. Droplet size is 

reduced by heat and stream of dry N2 gas. Ions are expelled by coloumbic 

explosion from the droplets during the evaporation process are then drawn 

toward an inlet that admits them into the vacuum region of the spectrometer (Fig. 

1). Large proteins and oligonucleotides produce multiply-charged ions, brought 

about by multiple photon transfer events. 
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An ESI mass spectrum of a sample is characterized by a series of peaks 

corresponding to ions carrying different charges ( and thus exhibiting different 

mass-to-charge values). The resulting mass spectra must be deconvoluted to 

determine the molecular weights of the compounds analyzed . 

.,,..8GIUGDfl 

~--·. 
and/or 

a,y gas 

Fig. 1 Electrospray mass spectrometry source (Siuzd~ 1994) 

The addition of ESI sources to quadruple mass spectrometers has extended 

the accessible mass range up to about 100 kDa (Meng et al., 1988). Electrospray 

mass spectrometry (ESMS) has made its way into the analytical community and 

has become an established analytical technique in molecular biology and 

biotechnology. ESI has gained rapid acceptance due to the ease by which it 
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could be interfaced with liquid separation techniques (Loo et al., 1989; Mann et 

al., 1992). 

The advent of matrix-assisted laser desorption ionization (MALDI) time­

of-flight (TOF) mass spectrometry (MS) occurred during the same time as ESL 

Here the analyte of interest is dissolved in a solid matrix, most commonly an 

aromatic carboxylic acid matrix, that absorbs strongly at the wavelength of the 

laser that irradiates the sample. The matrix promotes analyte desorption and 

ionization by preferential absorption of the laser energy which allows the analyte 

to be absorbed as the matrix sublimes, with little or no fragmentation (Fig. 2) . 

rne&al aurtace 
20.000\/ 

protein ion owsorDMl 
trammauu 

mus anatyzor 

I -

Fig. 2 MALDI mass spectrometry source (Siuzdak, 1994) 
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MALDI is an ionization technique that is best suited for multichannel 

mass spectrometers such as time-of-flight (TOF), ion traps, and Fourier transform 

mass spectrometers (FTMS), because ions are produced in pulses. This 

technique has extended the accessible mass range up to about 500,000 Da. 

MALDI is well suited for the analysis of low purity samples (in some instance 

even natural raw products), could easily perform analysis of complex analyte 

mixtures. It may be possible to analyze peptides and oligonucleotides directly 

from blots by MALDI, if the matrix can be incorporated into the sample. 

Both ESI and MALDI are so-called soft ionization techniques, which 

generate protonated molecules of low internal energy generally and thus have 

little tendency to fragment. Both of these have unique capabilities, as well as 

some fundamental similarities. In MALDI, ions arise from a solid phase, have 

low charge states, and can be formed from a sample containing many commonly 

used biological salts and buffers (Karas et al., 1991; Mock et al., 1992). In 

contrast, ESI ions are generated from solution, are formed with a range of charge 

states, and can not be formed efficiently in the presence of even small amounts of 

extraneous electrolytes (Smith et al., 1991; Kebarle and Tang, 1993). Ions 

produced by ESI are "colder" than those produced by MALDI and other 

desorption ionization techniques. Such low internal energy makes these ESI-
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generated ions difficult to fragment into product-ion studies. Common feature of 

these techniques include: generation of unfragmented protonated molecules, the 

ability to accurately mass analyze biomolecules in the mass range of tens of 

kilodaltons, detection limits at the low-picomole level. In these respects, the 

strengths of either the MALDI or the ESI technique complement the weakness of 

the other. 

In this introduction, we will concentrate on MALDI-TOF MS. 

1. Development of matrix-assisted laser desorption ionization 

Laser ion formation for mass spectrometric analysis dates to the early 

1970s (Vastola et al., 1970). Early work combining lasers and mass 

spectrometry utilized the laser to vaporize neutral species, which were ionized by 

electron impact (Cotter, 1992). As lasers with short pulse widths and transient 

digitizers were developed, time-of-flight mass spectrometers could be used to 

separate the ions ablated during the laser pulse, and in 1975 a laser microprobe 

mass spectrometer was reported by Hillenkamp (Hillenkamp et al, 1975) for the 

analysis of biological species. In 1978, Posthumus and coworkers (Posthumus et 

al, 1978) used a pulsed CO2 laser and a sector field mass spectrometer to analyze 

organic compounds. Prior to MALDI, the largest biological molecules produced 
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by direct laser desorption were m/z 1000. Industrial polymers yield ions as large 

as m/z 10,000 (Cody, et al., 1990). 

In 1988, a major breakthrough enabling the mass analysis of much larger 

species come about. Independently of each other, the groups of Tanaka (Tanaka 

et a/.,1988) and Hillenkamp (Karas and Hillenkamp, 1988) published mass 

spectra of monomeric or multimeric organic ions with masses above 100,000. 

The name matrix-assisted laser desorption ionization mass spectrometry 

(MALDI-MS), has meanwhile come into use for the method. The Japanese 

group used metallic nanoparticles suspended in glycerol as a matrix and N2 laser 

emitting at 3 3 7 nm, whereas the German group used nicotinic acid as a matrix 

and Nd:YAG laser emitting at 266 nm. Since then, mass spectrometry has been 

employed effectively in the molecular weight and structural determination of 

macromolecules. The MALDI technique extended the accessible mass range up 

to about 500,000 Da at fmol. The mass accuracy at m/z 20,000 is 0.1 %. 

2. The matrix 

The success of MALDI for the sensitive detection of an analyte depends 

on the nature of the matrix. Since MALDI was first discovered, several different 

compounds have been employed successfully as matrix. The matrix is a key part 
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of this mass spectral method. The function of the matrix is generally thought to 

be three fold (Bahr, et. al. 1994): 

( 1 ) Absorption of energy from the laser light which results in the ejection of 

both matrix and analyte molecules into the gas phase. 

( 2 ) Isolation of the analyte molecules from each other. Because the analyte 

molecules are incorporated in a large excess of matrix molecules, strong 

intermolecular forces are thereby reduced (matrix isolation). 

( 3 ) Ionization of the analyte molecules 

The basic rational to employ matrices for laser desorption ionization was 

to enable desorption of analytes not resonant with the wavelength of the laser 

(Karas and Hillenkamp, 1988). In addition, an appropriate matrix candidate 

should also be fairly water soluble, and not reactive with the analyte. Most 

useful matrices are found mainly by trail and error because the mechanism of 

MALDI is still not fully understood. However, some empirical criteria for matrix 

selection have been suggested (Juhasz, et. al. 1993). 

A good matrix substance should at least have the following : 

( 1 ) A reasonable high molar extinction coefficient at the laser wavelength used. 
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( 2 ) Miscibility with the analyte in the solid phase and solubility in the same 

solvents required for dissolution of the analyte. 

( 3 ) Good vacuum stability (low vapor pressure). 

( 4 ) Proper chemical composition that promotes ionization (matrix functional 

groups that can donate protons to the analyte ). 

( 5) Nonreactivity with the analyte. 

( 6 ) Other physical properties such as a low heat of sublimation and a capacity to 

crystallize readily. 

A whose host of compounds have been tested as matrix, chosen mainly 

according to above criteria. Many them were found to work, but only a few 

became really useful in practice. A list of some common matrices for nitrogen 

laser is given in the Table 1. 

3. Instrumentation 

MALDI is a pulsed ionization techniques that is capable of producing ions 

of high mass and therefore is normally coupled with a time-of-flight (TOF) mass 

analyzer, although several applications have been performed on FT-ICR 

(Buchanan and Hettich,1993 and Castoro et al., 1993) or on magnetic sector 

analyzers (Hill et al., 1991 and Annan et al., 1992); recently using a quadrupole 

ion trap mass spectrometer have been reported (Jonscher et al., 1993; Lee and 

Lubman, 1995; Doroshenko and Cotter, 1996). 
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Table 1. 

Common Matrices 

Matrix Structure References 

00 Strupat et 

Q-00011 2,5-Dihydroxy benzoic acid (DHB ) al.,1992) 
HO 

CH30 Beavis and 
HO*HC-CHCOOH 

Sinapinic acid (SA) Chait, 1989 CH30 

HO~CH•CHCCDH 
Wu et al. 

3-Hydroxy picolinic acid HO 1993 

~OH 
Beavis and 

Caffeic acid (CA) 9 COOH Chait, 1989 

~OC-CTUYJH 

Beavis and 

Ferulic acid (FA) Chait, 1989 CHJO 

CN 

H0-0-Ho-t-cooH 
Beavis and 

4-hydroxy-a-cyanocinnamic acid Chait, 1992 

(4HCC) 
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Time-of-flight (TOF) mass analyzer 

In TOF analyzers, ions are formed by a pulsed ionization process (pulsed 

laser radiation for MALDI) in a short source region containing an electric field, 

the mass-to-charge ratio of an ion is determined by measuring its flight time. 

After acceleration of the ions in the source to normally the same kinetic energy, 

they pass a field-free drift tube with a velocity proportional to (m/zi) ·112
• 

Because velocity and mass inversely proportional, ions are separated during their 

flight. Thus, low mass ions have a shorter flight time than that of heavier ions. 

The clock (i.e. the oscilloscope) used to measure the TOF of the MALDI ions is 

triggered by the laser pulse. Typical flight times are a few microseconds 

( deoxyguanosine) to 100 microseconds (bovine serum albumin). Acceleration 

voltages are typically 4-30kV and flight path lengths range from 0.5-3m. 

All the ions that are formed from a single laser pulse and that are 

accelerated by the electric field give rise to a transient TOF signal from the 

detector at the end of the flight tube. Ion detectors as used in other mass 

spectrometers are either secondary electron multipliers (SEM) or microchannel 

plates (MCP). Single-shot spectra are usually summed to achieve better signal­

to-noise before being transferred to the data system. Time-to-mass conversion is 
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achieved by mcorporatmg the TOF of 10ns of known mass (from internal or 

external standards) into a calibration algorithm from which mass values can be 

computed for unknown ions with experimentally determined flight times. 

There are actually two types of TOF configurations in use for MALDI, 

linear mode and reflectron mode. Linear instruments represent sort of an 

archetype which work well for all kinds of parent ions but at moderate mass 

resolution (m/8m no more than 500 normally) (Fig. 3). The more complex 

reflectron instruments offer a much better mass resolution (m/8m more than 2000 

for small ions), however, for large molecules, MALDI desorbed ions with poor 

resolution may observed due to metastable fragmentation. The reflectron mode 

re-focuses ions according to their energy (Fig. 4). 

Source extrac:ion Drift reg,cn Detector 

e- a.- I 
:,= Vlsj =020 l_ 

V ~ 

8- : G- 0- 0- 0- e-
l 

1-s--t·-------o-------

Fig. 3 Diagram oflinear mode time-of-flight analyzer (Cotter, 1992) 



Refloc:led Ion 
csetecsor 

Reflaetran 

d, ~\\\\\ 
\ \ \ \ ', 

' ' ' ' ' ' ' ' 

Fig. 4 Diagram of reflectron mode time-of-flight analyzer (Cotter, 

1992) 
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The advantage of MALDI-TOF is that the up mass limit of a TOF 

analyzer is virtually unlimited, permitting direct determination of very large 

biomolecules. However, sensitivity decreases with m 112 due to the nature of the 

detector. Additional virtues of the time-of-flight instrument are high ion 

transmission, simplicity and low cost. In spite of poor resolving power, MALDI-
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TOF can still possibly determine the mass with an accuracy up to ±0.01% (more 

typically ±0.1 %) for proteins with molecular mass between 1 to 40 kDa. 

4. Applications: Protein Analysis 

Identification of protein on the basis of accurate molecular weight 

determination and peptide mapping is a crucial step in many areas of protein 

research. The well-established and widely used protein technique such as gel 

electrophoresis has poor mass accuracy, typically in the range of 5~ 10% (Hames 

and Rickwood, 1990). The accuracy of matrix-assisted laser desorption 

ionization mass spectrometry is much better as described above (±0.1%). The 

short analysis time, tolerance of impurities, ease of operation, and the price of 

instrument is changing the way proteins are characterized. 

A. Molecular weight determination of proteins 

A fundamental parameter in the initial characterization of a protein is to 

determine its molecular weight. In most biochemical laboratories this is 

approximated by gel electrophoresis. It is not uncommon, however, to discover 

large discrepancies between a molecular weight determined by gel 

electrophoresis and the molecular weight calculated from the amino acid 
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sequence. This inconsistency led to explore an alternative method, MALDI MS 

to accurately determine protein molecular weight. 

Proteins have turned out to be especially amenable to MALDI analysis, 

particularly with respect to sensitivity and accessible mass range, and several 

hundred peptides and proteins have been successfully analyzed. Fig. 5 show a 

typical MALDI spectrum from cytochrome C (MW 12,384) with 4-Hydroxyl-a­

cyano-cinnamic acid (4HCC) (MW 189.2) as matrix, which can serve to 

demonstrate the main feature of MALDI mass spectrum. 

In MALDI mass spectra of cytochrome C, the most intense signal 

generally is the singly charged molecular ion, in this case, (M+H/ = 12,385. 

Additionally, doubly (M+2H)2+ and triply (M+ 3H)3+ charged molecular ions as 

well as singly and multiply-charged cluster ions in some instances. The low 

mass range (<500 Da) is dominated by background and matrix-related peaks 

representing species such as monomeric protonated matrix molecules 

(4HCC+Ht = 189.2, dimeric protonated matrix molecules (2x4HCC2+Ht = 

379.4, a protonated decomposition product (dehydration) of the matrix (4HCC­

H2O+Ht = 172.2, sodium and potassium ions (M+) = 23 and 39, respectively, as 

well as other intermittent products. Fig.6 is a mass spectrum of 4HCC. 
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Proteins undergo protonation (positive ion) or deprotonation (negative ion) 

are predominant ionization mechanisms. The primary information that can be 

deduced from these spectra is the molecular masses, which are obtained by taking 

centroids of the peaks and computing an average value with standard deviation, 

taking into account the fact that they should all be integer multiples or fractions 

of each other. 

Fragment ions, due to the loss of small neutral molecules such as H2O, 

NH3 or HCOOH from protonated molecular ions, are of low relative abundance. 

Fragmentation of the amid bonds does not occur during MALDI desorption and 

ionization. 

A mass accuracy of 0.01% for proteins up to 30,000 Da can be obtained 

(Beavis and Chait, 1989; and 1990). Decrease of mass accuracy in higher mass 

range is believed to be due to non-resolved adducts between analyte and matrix 

(Bahr et al., 1994). 

B. Structural analysis of proteins 

Structural analysis of proteins usually start with the 'identification of a 

target protein or peptide' in some raw material. Classical methods would require 

at least some concentration/purification steps before separation (usually 
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electrophoresis) can give some information on the presence of the compound of 

interested. Examples are the proteins found in human lipoprotein fraction 

(Beavis and Chait, 1990), the mapping of saliva enzymes (Nelson and Vestal, 

1991 ), and detection of lactoferrin directly out of a preterm infant urine sample 

(Hutchens and Yip, 1993). 

Traditionally, characterization of proteins is carried out by peptide 

mapping (Schroeder, 1984) which produced chemical or enzymatic digest 

followed by separation steps which typically employed reverse phase HPLC with 

UV detection to identify peptides by their retention time. Mass spectrometry 

identifies peptide fragments by their molecular weight rather than retention time 

(Yates et al., 1993; James et al., 1993). In this approach, peptide mass-mapping 

is performed after cleavage of a protein ( of known sequence) at selected sites by 

specific enzymes or chemical reagents. The calculated peptide masses can be 

compared to the experimentally observed peptide masses to identify sequence 

variation or amino acid modification. Again, the ease of operation, the analytic 

precision, the sensitivity and an only modest degree of selectivity in desorption 

ionization make MALDI-MS an ideally suited substitute technique for such task. 

Due to the high tolerance of MALDI for salt and buffer concentration, digest 
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samples can usually be loaded directly from the reaction vial without purification 

by chromatography separation (Henzel et al., 1993). 

The percentage of fragments observed in a MALDI spectrum depends 

upon the number of fragments produced in the digest. Therefore, mass mapping 

more difficult as the molecular weight of the peptide increases. For a protein, in 

the 10,000 to 15, 000 Da range, MALDI appears to provide quite complete 

mapping information, usually identifying between 95 to 100% of the fragments 

(Hancock, 1995). A few investigators have reported on the analysis of tryptic 

digests of large proteins by MALDI MS i.e. proteins above 25,000 Da. Starting 

with only 280 fmol of unfractionated material, Billeci and Stults (Billeci and 

Stults, 1993) measured 24 of 25 expected tryptic fragments of recombinant 

human growth hormone (rhGH) (MW 22,125), and 45 out of 51 expected 

glycopeptides from 4.5 pmol digest of recombinant human tissue plasminogen 

activator (rt-PA) (MW 59,008). 

A combination of protein digestion and MALDI-MS peptide mass 

mapping has been employed successfully in localizing the sites of chemical 

modification in variety of proteins (Huberty et al., 1993; Robert et al., 1994; Yip 

and Hutchens, 1992). Since MALDI-MS has 0. 1-0.01% accuracy for molecular 

weight determination, if the target compound is in the mass range below 20 kDa, 
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the precision and accuracy of molecular mass determination is already good 

enough to distinguish even small modifications such as phosphorylation (Liao et 

al., 1994), sulfatation or lipidation (Talbo and Roepstorff, 1993; Spengler et al., 

1993). Thus, with target proteins of known structure, MALDI-MS provides for 

rapid confirmation of structure and information regarding possible modification. 



Problem statement 

A. Matrices synthesis 
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We wish to evaluate the utility of two new matrices, 4-benzyloxy-a­

cyanocinnamic acid (BCC) and 4-phenyl-a-cyanocinnamic acid (PCC), for the 

analysis of arylamine-modified nucleotides. This application is suggested by the 

results of George et al. who demonstrated the utility of these matrices for 

polycyclic aromatic hydrocarbon (P AH) adducts of nucleic acid at the femtomole 

level. 

The structures of the P AH modified nucleic acids have nonpolar aromatic 

ring systems on one end and a polar nitrogen heterocycle on the other. Common 

peptide matrices such as 4-hydroxy-a-cyano-cinnamic acid (4HCC) contain a 

aromatic ring with polar groups on both ends because peptides possess a number 

of polar groups. 4-benzyloxy-a-cyanocinnamic acid and 4-phenyl-a-

cyanocinnamic acid are similar in structure to adducts because they have a polar 

group on one end of the molecule and aromatic rings on the other. Moreover, 

BCC and PCC have strong UV absorption maximum at 334 and 332 nm 

respectively, which are close to the wavelength of the commonly used nitrogen 

laser. It is hoped that these two matrices will lower the limits of detection for 
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DNA adducts, thus enable us to measure the molecular weight for unknown 

adducts derived from human sources. 

B. Identifying cross-linked hemoglobin sites 

Cross-linked hemoglobins have been studied for years as potential blood 

substitutes (Winslow, 1992). However, hemoglobin, free in solution, will not do 

as a red cell substitute. The reasons for this are rapid clearance by the kidney 

after dimerization and high oxygen affinity, which prevents adequate tissue 

oxygenation. Attempts to modify hemoglobin chemically are aimed to 

overcoming these problems. 

In order to develop more effective hemoglobin-based blood substitutes, we 

must understand the interrelationship between the structure and the products' 

function. Chemically modification not only change the structure of biomolecule, 

but also affect the biofunction. By knowing where the modification take place, 

we can provide insight information about structure. The methods for cross­

linking site assignment were based on X-ray crystallography or molecular 

modeling study. These methods were tedious, time-consuming or lack accuracy. 

Here we wish to do peptide mass mapping by MALDI MS as means of 

characterizing the products of hemoglobin cross-linking reaction. 



CHAPTER II 

EXPERIMENTAL SECTION 

1. Materials and methods 

A. Material used for the synthesis of the matrices as follow: 

4-hydroxy-a-cyanocinnamic acid and benzyl bromide (Sigma), dimethyl­

d5-Sulfoxide (DMSO), potassium bromide, ammonium acetate, methanol, 

benzene, cyanoacetic acid, potassium hydroxide, and 4-biphenylcarboxaldehyde 

(Aldrich). 

B. Materials used for the peptides studies were: 

SOS-protein makers, DPCC trypsin, 4-hydroxy-a-cyanocinnamic acid 

(4HCC), 2,5-dihydroxybenzoic acid (DHB), trifluoroacetic acid (TFA), 

myoglobin (horse heart), cytochrome C (horse heart), bovine insulin (pancreas), 

bradykinin, i-deoxyguanosine, Bis-Tris purchased from Sigma Chemical 

Company (St. Louis, MO). Urea, 2-mercaptoethanol, acetonitrile, ammonium 

citrate, benzoyl chloride, methylene chloride, tetrahydrofuran, formic acid, 

isopropemol, methanol and ethanol purchased from Aldrich Chemical Company 
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(Milwaukee, WI). microcon and centricon concentrators from Amicon (Beverly, 

MA). Hydrochloride acid, methanol, ammonium bicarbonate, acetone, ethyl 

ether, sodium phosphate dibasic, dialysis tubing, pH standard buffers from Fisher 

Scientific Company (Fair Lawn, NJ). Phastgel Homogenous 7.5, Phast gel 

sample applicator 8/1, Phast gel SDS buffer strip, Phast blue R from Pharmarcia 

Chemicals. 

C. General methods 

Melting points were determined on a Mel-Temp melting apparatus and 

were uncorrected. Thin layer chromatography (TLC) was conducted on E. 

Merck aluminum-backed, 0.2 mm silica gel TLC plate. Visualization was 

accomplished with an ultraviolet lamp (model UVGL-25, Upland, CA). 

Proton (1H) NMR spectra were taken at 300 MHz using a Varian VXR 

300 NMR instrument. The chemical shift of the 1H NMR spectra were 

referenced to Dimethyl-d5-sulfoxide (DMSO) (8 = 4.59). Infrared Spectroscopy 

data were obtained on a Genesis Series FTIR (A.Ti instrument North American) 

in potassium bromide pellets. Ultraviolet spectrum were obtained on a Hewlett­

Packard Model 4852A diode-assay spectrophotometer. 

High Performance Liquid Chromatography were conducted on a Beckman 

421A system with two 110B Solvent Delivery Module pumps, 163 Variable 
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wavelength detector and 427 Integrator. Centrifugation was Cal.Tied out on a 

Sorvall RC5B refrigerated centrifuge using a SS-34 rotor. 

2. Synthesis of Matrices 

A. 4-benzyloxy-a-cyanocinnamic acid (BCC) 

The method for BCC synthesis were adopted from Williamson reaction 

(Child et al, 1977). Methanol (15 ml) and KOH (0.8 g, 14 mmol) were combined 

in a round bottom flask and heated until all the KOH dissolved. Then, 4-

hydroxy-a-cyanocinnamic acid (0.9 g, 5 mmol) was added to the solution and 

refluxed. When solution began to boil, benzyl bromide ( 1.21 g, 7 mmol) was 

added and the reflux continued for 2 hours. When the reflux was complete, 5 ml 

of water was added slowly being sure the reaction mixture was still hot. We 

continued to heat the mixture until the light yellow precipitate dissolved and the 

solution turned yellow. Then, the reaction was cooled to crystallize the BCC 

(pale-yellow) from solution. The crystals were collected by vacuum filtration 

and were washed by cold water. Yield, 33%. Melting Point: 192-196°C. 

B. 4-phenyl-a-cyanocinnamic acid (PCC) 

The method for synthesis of PCC 1s adopted from Knoevenagel 

condensation (Astle et al, 1955). 4-biphenylcarboxaldehyde (1.04 g, 5.8 mmol), 
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cyanoacetic acid (0.5 g, 5.8 1mnol) and aimnonium acetate (0.024 g, 0.3 mmol) 

were dissolved in 10 ml of benzene, The resulting solution was yellow. The 

solution was refluxed for eight hours. Then the solution was stirred overnight at 

room temperature. A green-yellow precipitate was formed and collected by 

suction filtration. Yield: 52%, Melting point: 241-243°C. 

3. Preparation for identifying cross-linked hemoglobin sites 

A. Preparing the globin chains 

All the hemoglobin A and cross-linked hemoglobin solution were from Dr. 

K. W. Olsen in the chemistry department at Loyola University Chicago and 

used without further purification. The method we used to prepare globin chains 

was adopted from the method of Ascoli (Ascoli et al., 1981). 

A 5 ml of hemoglobin solution, cooled to 4 °c, was added dropwise and 

into 200 ml of acetone (-20°C, kept on dry ice) containing 2% concentrated HCl 

while stirring. After adding the hemoglobin, the acid-acetone solution turned 

brown, and the globin chains formed a white precipitate. The suspension was 

centrifuged at 3000 g (-12°C) for 10 minutes. The precipitates were collected by 

suction filtration. The precipitates were washed twice with cold acetone (-20°C) 

in order to remove the residual acid. Then the precipitate was washed by ether 

and allowed to dry under ambient conditions. 
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B. Globin chain separation 

The globin chain separation were conducted on high performance liquid 

chromatography (HPLC) by using a Vydac C4 analytical column (250x4.6 mm). 

Purified hemoglobin and cross-linked hemoglobin were directly injected to the 

HPLC. The buffer A was 20% acetonitrile, 80% water in 0.1 % trifluoroacidic 

acid (TF A), buffer B was 60% acetonitrile, 40% water in 0.1 % TF A. The 

gradient was as follow: buffer B from 50 to 62.5% over 60 minute period, 62.5 to 

86% over 20 minute period, then back to 50% over 10 minute period. 

C. Conversion of myoglobin to apomyoglobin 

Removal of the heme was accomplished m a manner similar to the 

removal of the heme from hemoglobin with minor modification. Dry myoglobin 

was dissolved in a minimum volume of distilled deionized water. The 

apomyoglobin was precipitated by dropwise addition of the myoglobin solution 

to a 100-fold excess volume of ice-cold, rapidly-stirring acetone in 0.3% HCI. 

The apomyoglobin was allowed to settle on ice for 15 minutes and pelleted with 

a centrifuge (3000 g). The supernatant was removed and the pellet was washed 

once with ice-cold acetone in 0.3% HCl, the residual acetone was blown off 
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under a stream of helium. The apomyoglobin was dissolved in l: l acetonitrile + 

water and dried thoroughly in a speed vac. 

D. Sodium Dodecylsulfate Polyacrylamide Electrophoresis (SDS-PAGE) 

The SDS-PAGE gel electrophoresis was carried out on a Pharmacia 

PRAST gel apparatus. 12.5% of homogeneous gel 12.5% T, 2%C) and buffer 

strips (Pharmacia Co.) were used. The samples were denatured for 5 minutes at 

100°C in 10µ1 of a solution made of 0.25M Tris, pH=6.8, 4% of SDS, 20% of 

glycerol, 10% of f3-mercaptoethanol and 0.05% of bromophenol blue as the 

maker dye. One set of molecular weight standard marker was used. The protein 

molecular weight standard makers were bovine albumin (66,000 daltons), egg 

albumin (45,000 daltons), glyceraldehyde-3-phosphate dehydrogenase (29,000 

daltons), carbonic anhydrase (24,000 daltons), trypsin inhibitor (20,100 daltons) 

and a-lactalbumin (14,200 daltons). The molecular protein standard markers 

were treated in the same digestion mixture as the samples. Electrophoresis was 

carried at a constant current of 1 OmA (250V until the marked dye reached the 

bottom of the gel. After the electrophoresis, the proteins were fixed and stained 

by soaking the gel in 0.1 % of PhastGel blue R solution in 30% of methanol and 

10% of acetic acid in distilled water for 5 minutes. The gel was destained in 

30% of methanol and 10% of acetic acid in distilled water for 20 minutes twice. 
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The molecular weight of the separated a, (3-globin chains were estimated from 

the graph of the log of molecular weight versus relative mobility of the standard 

markers. 

E. Enzymatic digestion 

Digestion of bovine insulin 

Tryptic digestion of bovine insulin method was from (Vestling, 1991 and 

Matsudaira, 1993). Trypsin was dissolved in 0. lmM CaCh solution to make 

lmg/ml stock solution. Bovine insulin was dissolved in 0. lM NHiHCO3, 0. lmM 

CaCh buffer to make lmg/ml solution. 20ml of trypsin solution(lg/ml) were 

added to 1ml of bovine insulin solution, vertex for a few minutes, incubated in 

37°C for 2 hours, then boiled sample for 2 minutes and keep in freezer for MS 

analysis. 

Tryptic digestion of apomyoglobin 

The apomyoglobin was dissolved at concentration approximately 0.5 

nmol/µl in 2M of urea, 0. lM of Tris-HCl (pH=8.3), and digested with 2% by 

weight of trypsin for 3 hours at 37°C. 
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Digestion of hemoglobin 

Digest of Hb with trypsin were adopted from Kluger et al ( 1992). Heme­

removed hemoglobin and myoglobin were dissolved in 8M urea and keep at room 

temperature for 2-4 hours to increase susceptibility to digestion. The solution 

was diluted to 2M urea with 80mM ammonium bicarbonate buffer, pH was 8.5. 

Trypsin was dissolved in 80mM ammonium bicarbonate to make lmg/ml stock 

solution and 5% of total protein weight's trypsin were added to globin chains 

solution. The globin chains digested for 24 hours at room temperature. The 

tryptic peptides were then boiled for 2 minutes, keep in freezer and ready for MS 

analysis. 

CNBr digestion of hemoglobin or cross-linked hemoglobin was performed 

by Dr. Kondubhotla. 

F. Centricon (or micron) isolation 

After enzymatic digestion, 300µ1 samples were placed in microcons and 

then centrifugeed in a savant speed vac for overnight. The membranes were 

washed with 0.1 % TFA water solution several times. 

For CNBr digestion of cross-linked hemoglobin, we used centricon to 

isolate the fragment we were interested. One to 3 ml of digested cross-linked 



32 

hemoglobin solution was placed in a centricon, centrifuge at 3000g for 30 

minutes, and washed with 2M urea a few times. 

G. Peptide Mapping by High Performance Liquid Chromatography (HPLC) 

Tryptic peptides were mapped by HPLC on a Vydac C18 column/ at a 

flow rate at lml/min. For bovine insulin, we used gradient from 10% to 50% 

acetonitrile in 0.1 % trifluoroacetic acid (TF A) over 20-min period. In this 

system there complete separation of the tryptic peptides. For myoglobin, the 

gradients used were from O to 10% over 10-min period and then 10-50% 

acetonitrile with 0.1 % TFA over 20-min period. The Buffer A for these two 

systems were 0.1% TFA in water. For hemoglobin, we used gradient from Oto 

15% B over 10 minutes, 15-50% over 60 minutes, and then 55-100% over 10 

minute. (A= 0.1% TFA, B = 80% acetonitrile, 0.1% TFA). 

Collected effluents were evaporated to dryness by speed vac, then matrix 

solution was added directly to dried sample vial, and the sample was subject to 

MS analysis. 

4. MALDI-TOF MS 

A. Instrument set up 
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The MALDI-TOF Mass spectrometer constructed at Loyola University 

Chicago was a modified Wiley-McLaren design (Model D850, manufactured by 

R. M. Jordan Co., Grass Valley, CA) and may be operated either in the linear or 

reflectron mode. A nitrogen laser (VSL 337 ND, Laser Science Inc., Cambridge, 

MA) is used to induce desorption and ionization. The wavelength of the laser is 

337nm and pulse width is 3 nanosecond. Fig. 7 is the diagram of the instrument. 

The ionization region is housed in a cubic stainless steel vacuum chamber 

pumped with a turbo pump (turbo-250V, Model 969-9423, Varian, CA), and this 

pump is also connected to another turbo located at middle of the flight tube. The 

flight tube is made from stainless steel tube, providing a total flight path of 1 m. 

The vacuum pressure of the instrument in the flight tube is 10-6 ~ 10-7 torr. The 

intensity of laser beam was controlled by a variable-beam attenuator (Newport 

Corp., Fountain Valley, CA) and focused onto the probe tip at a 45° angle to the 

probe surface with a single focal length quartz lens to a spot size of 150µm. The 

product ions were accelerated with potential 20kV and were allowed to drift 

down a field free region held in a vacuum maintained below 10-5 Torr. The 

acquisition of mass spectrum is initiated by the firing of the laser. A small 

fraction of the light is reflected off the laser optics as the light pulse enters the 

mass spectrometer. This reflected light strikes the surface of a photodiode which 

triggers the digital oscilloscope (Model TDS 520A, Tektronix, Beaverton, OR) 
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to initiate data acquisition. The detector is a 18 mm diameter dual-layer 

microchannel plate (MCP) detector. Data were recorded using a Tektronix 

digital oscilloscope and subsequently transferred to an IBM 486 compatible PC 

for processing. Spectra consisted of a summation of 20 to 30 laser shots. Spectra 

calibration and peak centroids were carried out on a 486 PC using TOFW ARE 

software. 

B. Sample preparations 

Peptides used as external standard were prepared by dissolving the 

peptides in 0.1 % TF Nwater to make solution concentration of lmg/ml. Digested 

samples either used as it was or prepared by centricon separation first. Some 

commonly used matrix materials, including 2,5-dihydroxybenzoic acid (DHB), 

cafeic acid (CA), sinapinic acid (SPA), 3-hydroxypicolinic acid (HPA), 4-

hydroxy-a-cyanocinnamic acid (4HCC) were obtained from Aldrich Chemical 

Co., and used without further purification. Near-saturated matrix solutions or 

50mM of 4HCC were prepared with 1:2 (v/v) deionized water and acetonitrile 

with 0.1 % trifluoroacetic acid. 

Samples were prepared by either premix sample and matrix or sequentially 

load sample and matrix on probe tip. 
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For premix sample, mixing a 2µ1 aliquot of sample solution with 20µ1 of 

matrix solution, vertex a few minutes. A 1 µl of the mixture was loaded on 

stainless probe tip and allowed to air dry at room temperature prior to introduce 

into the mass spectrometer. 

Sequentially loading sample and matrix on probe tip were from Vorm et al 

(1994). Matrix was dissolved in acetone to make a saturated solution. The 

matrix solution were applied on probe first, air dried, then the sample was put on 

top of matrix layer. 

The nafion film method of Bai et al.(1994) was also used. Nafion is 

available in liquid form at a concentration of 5% in a mixture of 10% water and 

lower aliphatic alcohols. Approximately 5 µl of this solution was applied to the 

stainless steel probe tip and air dry. Nafion formed a thin layer of film. The 

sample was directly deposited on the film and then the matrix was sequentially 

load onto the probe. 

External calibration was performed using either mixture of bradykinin 

(MW 1060.27) and bovine insulin (MW 5733.5), or mixture of cytochrome C 

(MW 12,384) and myoglobin (MW 16,951). 



CHAPTER III 

SYNTHESES AND EVALUATIONS OF MATRICES 

The search for useful matrix compounds has been an active area of 

MALDI MS research since the birth of the technique. Several hundred different 

organic compounds selected based on their UV absorbance (wavelengths at 337 

for N2 laser or 355nm for Nd: YAG laser) have been investigated. However, only 

a few of these are widely applicable. Most of the useful matrix compounds for 

peptides reported to date have been highly substituted, aromatic compounds 

containing carboxylic acid moieties. The requirement for aromaticity stems from 

the existence in such compounds of an absorption band close to the laser 

wavelengths commonly used for MALDI analysis. However, the role and /or 

importance of acidic functional groups during ionization in the MALDI process 

has not been established. Since the mechanism of MALDI is not fully 

understood, new matrices are still usually found by trial and error. 

The application of the technique to the mass analysis of nucleic acids has 

not been straightforward. The acidic matrices commonly used for the MALDI 

analysis of proteins have not been found to be generally applicable to analysis of 
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oligonucleotides and related compounds. Some empirical criteria for matrix 

selection have been proposed (Juhasz et al., 1993), however, George and 

coworkers proposed that the matrix which has similar structure to the particular 

analyte should give the best results. They reported two new matrices, 4-

benzyloxy-a-cyanocinnamic acid (BCC) and 4-phenyl-a-cyanocinnamic acid 

(PCC) that allowed for the detection of polycyclic aromatic hydrocarbon (P AH) 

modified nucleic acids (DNA) adducts at low femotomole level. We have test 

these matrices for the analysis of CS-substituted arylamine adducts of 

deoxyguanosine. 

It is hoped that these matrices will enable lower limits of detection for 

arylamine nucleoside adducts, thus enable the molecular weight measurement of 

otherwise unknown adducts derived from human sources. 

1. Synthesis of matrices 

A. 4-Benzyloxy-a-cyanocinnamic acid 3 

4-Hydroxy-a-cyanocinnamic acid (4HCC) 1, one of the most commonly 

used matrix for MALDI, was deprotonated first by using IM of potassium 

hydroxide in methanol at 65°C. Under basic condition, 4-hydroxy-a­

cyanocinnamic acid was refluxed with benzyl bromide 2 (refer to Chapter II). 
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Since acid may break ether -OCHr bond, we did not acidify the product. The 

reaction gave a moderate yield (33%). The product was recrystallized from 

acetone. However, prior literature listed 4-benzyloxy-a-cyanocinnamic acid 

melting point was 204-205°C (George et al., 1994), we didn't get this melting 

point even after recrystallization with acetone. Our melting point was 192-

1960C. Evidence of 4-benzyloxy-a-cyanocinnamic acid 3 formation is supported 

by the present of -CH2O- group between two benzene ring in 1 H NMR ( at 8 = 

5.26). The 1H NMR spectra of 4- benzyloxy-a-cyanocinnamic acid in DMSO is 

shown in Fig. 8, and chemical shift for H1 are : 8 5.26 (s, lH), 8 7.27 (d, 2H), 8 

7.38-7.43 (m, 3H), 8 7.50-7.525 (d, 2H), 8 8.09-8.12 (d, 2H), 8 8.24 (s, lH). 

The NMR spectrum indicated some impurities in the sample. Also, the UV 

spectrum Fig. 9 has an absorbance maximum at 334 nm consistent with the 

literature (George et al. 1994). IR spectra (Fig. 10) showed evidence (1239 cm-1 

for asymmetric C-O-C stretch) for -CH2O- group linkage. Positive ion MALDI 

spectra (Fig. 11) did not show abundant (M+Hf molecular ion of m/z 280 

(calculated C17H12NO3, 278), but showed (M+Kf ion of m/z 318 and (M+K­

H2O)+ ion of m/z 301 which indicated synthesis was successful. 
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B. 4-phenyl-a-cyanocinnamic acid 7 

Cyanoacetic acid 6 was deprotonated usmg ammomum acetate 8 in 

benzene from room temperature to approximately 78°C. Commercially available 

4-phenyl-a-cyanocinnamic acid 7 was added to this solution, and brought to 

reflux (refer to Chapter II). 

The product was a yellowish green powder after washing with cold water. 

The yield was 52%. The 1H NMR spectra showed chemical shift at 8 = 8.37 

indicated the formation of bond between -C=CH- group and biphenyl group. Fig. 

12 showed 1H NMR spectrum of 4-phenyl-a-cyanocinnamic acid in DMSO, and 

the chemical shift for H1 are: 8 7.40-7.55 (m, 3H), 8 7.75-7.80 (D, 2H), 8 7.87-

7.95 (d, 2H), 8 8.17-8.22 (d, 2H), 8 8.37 (s, lH). The chemical shift at 8 = 2.49 

was solvent DMSO. The melting point (241-243°C) was consistent with the 

literature (George et al., 1994). UV spectra (Fig. 13) supported the formation of 

4-phenyl-a-cyanocinnamic acid by showing absorbance maximum at 332 nm. 

The IR spectra (Fig. 14) of this compound gave a peak around 2200cm- 1 

confirming the presence of the -CN functional group. Positive MALDI spectra of 

PCC (Fig. 15 ) showed abundant (M+H/ ions of m/z 249 (calculated for 

C16H10NO2, 248) and (M+H-H2O/ ion of m/z 232. The ion at m/z 268 was 

(M+NH3/. 
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2. Matrix evaluation 

A. Deoxynucleoside Adduct Studies 

In order to compare BCC, PCC with other matrix, we examined BCC, 

PCC and 4HCC resolution and detection limits based on 2'-deoxyguanosine (dG) 

and N-( deoxyguanosin-8-yl)-2-acetylaminofluorene ( dGC8AAF). 

It was not possible to use calibration plots to determine the limits of 

detection because the signals produced by MALDI were highly variable. The 

lowest amounts of analytes required for reproducible observation of their 

molecular ion ( signal to noise ratio at least 3: 1) for there sample loading were 

taken as detection limits. These limits were established by loading progressively 

lower and lower amounts of analyte. Matrix blanks were run to identify the 

matrix peaks that might obscure an analyte peak. We have observed that 2' -

deoxyguanosine did yield observable signals from 4-hydroxy-a-cyanocinnamic 

acid ( 4HCC), 4-benzyloxy-a-cyanocinnamic acid (BCC), and 4-phenyl-a­

cyanocinnamic acid (PCC). 

The MALDI-TOF mass spectrum of dG (Fig. 16) obtained by using 35 

picomole of the analyte, showed an abundant (M+Hf ion of m/z 268 for 4HCC 

(A) and BCC (B), but PCC(C) had peak at 268 which interference with the dG 

peak. Another ion at m/z 152, formed by the loss of deoxyribose, was observed 

in all spectra. The detection limit for dG was found to be 3.5 pmol based on the 
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m/z 152 peak (see Table 2) for these matrices. The mass resolution was m/) mat 

full width of half maximum (FWHM) 

OH H 

2'-deoxyguanosine ( dG) 

m/z 268 

► m/z 152 

+ 

OH 

Scheme 3 2'-deoxyguanosine fragmentation pathway 

The MALDI MS analysis of dGC8AAF adduct spectra (10 pmol) are 

given in Fig. 17 with 4HCC (A), BCC (B), and PCC (C) as matrix respectively. 

We did not observe (M+Hf ion of m/z 489 in any of these matrices. However, 

an ion at m/z 3 73 corresponding to loss of the deoxyribose was observed in 
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all matrices. There was a peak at m/z 3 71 in PCC, therefore, PCC is not useful 

for this specific adduct. For 4HCC, there was a peak at m/z 379 (2M+Hf, if 

adduct concentration is high enough, we observed m/z 373 adjacent to it. This 

ion at m/z 379 becomes insignificant at lower matrix concentrations. For 10 

picomoles of adduct, we observed a little shoulder right next to this dimer ion, 

therefore, it is impossible to measure the resolution for 10 pmol of adduct in 

4HCC. The limits of detection was found to be 10 picomole for saturated 4HCC 

and 5 picomole for PCC in a saturated solution. 

The results of the matrix study are summarized in Table 2. In several 

instances, the molecular ion peak was obscured by the matrix. 

B. Protein 

We tested the utility of BCC and PCC with a small peptide, bovine 

insulin, to determine if these matrices were suitable for peptide analysis. Bovine 

insulin was chosen as a test compound because it is a common standard for 

MALDI-TOF MS calibration that normally gives strong signals in MALDI, and 

we assumed that a matrix would not be useful if it does not yield a strong 

response for insulin. 



rn/z 373 
OH H 

N-( deoxyguanosin-8-yl)-2-acetylaminofluorene + 

Matrix 

4HCCA 

PCC 

BCC 

(dGC8AAF) 

rn/z 489 

Scheme 4 dGC8AAF fragmentation pathway 

Table 2 

Matrices evaluation based on dG and dGC8AAF 

N-( deoxyguanosin-8-yl)-2-

2' -deoxyguanosine acetylaminofluorene 

Resolution LOO Resolution LOD 

70.5 3.5pmol - 10 pmol 

80 3.5 pmol 99 5 pmol 

68 3.5 pmol - -

57 

Note: Both resolution and limits of detection (LOD) were based on m/z 152 

peak; resolution was m/) mat full width of half maximum (FWHM) 
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Calibration was carried out using the peak for K ·, the matrix dimer 

(2M+Ht at m/z 379, and the di- and monoprotonated peaks (M+2H)2+ at m/z 

2868 and (M+Hf m/z 5735 from bovine insulin. 

The matrices used in this study were 4-hydroxy-a-cyanocinnamic acid 

(4HCC), ferulic acid (FA), caffeic acid (CA), sinapinic acid (SA), 3,5-

dihydroxybenzoic acid (DHB), 4-benzyloxy-a-cyanocinnamic acid (BCC), and 

4-phenyl-a-cyanocinnamic acid (PCC). All matrices surveyed yielded ions 

indicative of bovine insulin. Most matrices showed significant background up to 

about m/z 600 with laser power sufficient to produce peptide signals. The results 

of the study are summrized in Table 3. 

Bovine insulin gave (M+Hf at m/z 5735 and (M+2Hf at m/z 2868 ions 

upon laser desorption from both PCC and BCC (Fig.18 A and B). Doubly 

charged peak (M+2H)2+ was in lower intensity compared to single charged peak 

(M+H)+, the dimer ion (2M+Ht of bovine insulin, was also observed at very low 

intensity and the peak width was very broad (Table 3). CA and FA (Fig. 19 A 

and B) gave better resolution for the singly charged peak, but the doubly charged 

peak showed little signal. Again, the dimer ion appeared in low relative 

abundance and was very broad. SA and DHB (Fig. 20 A and B) showed even 

better resolution than that of FA and CA for the singly charged peak, but there 

was Na+ adduct peak in relative higher abundance right next to singly charged 
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Table 3 

Matrix evaluation based on bovine insulin 

Matrix Resolution (M+Hf (M+H)2+ 

+ 

Caffeic Acid (CA) 41.5 + low intensity 

+ + 

Ferulic Acid (FA) 35.0 Na+ adduct low intensity 

+ + 

Sinapinic Acid (SA) 59.0 Na+ adduct low intensity 

4-Hydroxy-a-cyanocinnamic + 

Acid (4HCC) 95.0 + high intensity 

4-Benzyloxy-a- + 

cyanocinnamic Acid (BCC) 35.0 + low intensity 

4-Phenyl-a-cyanocinnamic + 

Acid (PCC) 23.0 + low intensity 

2,5-Dihydroxy-benzoic acid + 

(DHB) 50 + low intensity 

Note: Resolution was based on molecular ion (M+Ht m/z 5735 

+ detectable, - nondetectable 
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(2M+Hf 

+ 

+ 

+ 
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peak. The presence of adduct ions of high abundance adjacent to the (M+Hf 

peaks of proteins can interfere with accurate mass measurement. Doubly charged 

peaks and dimer peaks were formed with abundance for FA and CA. Both singly 

charged and doubly charged ions were observed at high relative abundance in 

4HCC (Fig. 21). 4HCC efficiently promotes multiple protonation of the analyte 

and produces little matrix background. Of all matrices surveyed in this study we 

found that 4HCC was most generally useful based on resolution. However, DHB 

gave the least interference in low mass range. In addition to analysis of P AH­

modified DNA adducts, PCC and BCC can be used as protein matrices as well, 

but they are not efficient as 4HCC. 

In summarization, we synthesized two new matrices BCC and PCC. 

These two matrices are good for PAR-modified DNA adducts detection because 

of low detection limits and better resolution. In addition, they can be used as 

protein matrices. 
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CHAPTER IV 

IDENTIFYING CROSS-LINKED HEMOGLOBIN BINDING SITES 

Interest in developing potential blood substitutes stems from the limited 

blood supply available for emergency situations. Cross-linked hemoglobin as 

potential blood substitute has been studied for years (Winslow, 1992) because 

hemoglobin has a high capacity to bind oxygen and deliver it to tissues. 

However, hemoglobin, free in solution, can not be used as a blood substitute due 

to its dissociation from a a213i tetramer to a ap dimer, which enables clearance 

from the bloodstream by the kidney. The oxygen affinity of the dimer is too 

large to allow tissues to absorb the oxygen. Chemically modifying hemoglobin is 

one way to overcome these problems. In order to develop more effective 

hemoglobin-based blood substitutes, we must understand the interrelationship 

between the possible changes that can be made in molecular structure during the 

modification, and how the changes affect the product's biological function such 

as oxygen binding affinity and inhibition of dissociation to dimers. Therefore, it 

is desirable to correlate the structure of a particular cross-linked hemoglobin with 
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its oxygen affinity and stability with respect to dissociation. 

The main sites for reaction on the hemoglobin molecule are located at N­

terminal amino groups and the E-amino groups of the lysine residues on the 

surface of the molecule. A few amino groups for crosslinking are available in the 

interior of the molecule such as lysine EF6(82)P in the 2,3-bisphosphoglycerate 

(2,3-BPG) pocket and lysine G6(99)a. There are forty reactive lysines (E-amino 

groups), two a-chain amino-terminal a-amino groups, and two sulfhydryl groups 

(cysteine F9(93)P) in human hemoglobin. These groups can be accessed by 

various cross-linking reagents, so, there are many potential modification sites. 

Therefore, many different crosslinked products are possible and characterizing 

the structure of each product may be difficult. 

Bis(3,5-dibromosalicyl)fumarate (DBSF) is a reagent (scheme 6) that will 

cross-link human hemoglobin in the oxygenated (oxy) form. The more reaction 

product has more oxygen affinity than normal hemoglobin. The primary sites of 

reaction are lysine EF6(82)P 1 and lysine EF6(82)P2 (Walder et al., 1980). 

However, when the same reaction is carried out under anaerobic conditions 

(deoxy), the product has reduced oxygen affinity. The primary sites of 

modification are lysine G6(99)a1 and G6(99)a2 (Chatterjee et al., 1986). 
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0 H 0 

Br 

Br 

l II I II 
tLysa 199-N -C-C=C-C-N -Lysa 2 99l 

I I I I 
H H H 
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Scheme 6 DBSF cross-linking reagent and primary reaction products. 
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In the past, the reaction products of crosslinking reactions were 

characterized by X-ray crystallography (Fernandez, 1995). Molecular modeling 

is used to indicate those reaction conditions that would maximize the desired 

product, and thus simplifying the analytical characterization. However, peptide 

mass mapping by mass spectrometry can provide more detailed information about 

the number of modification sites. Peptide mass mapping is performed after 

cleavage of a protein ( of known sequence) at selected sites by specific enzymes 

or chemical reagents. The calculated peptide mass can be compared to the 

experimentally observed peptide masses to identifying amino acid modification. 

Matrix assisted laser desorption ionization mass spectrometry (MALDI 

MS) offers more accurate, sensitive detection of peptides, a combination of 

protein digestion and MALDI MS peptide mass mapping has been employed 

successfully in localizing the sites of chemical modification for a variety of 

proteins. Mass analyses offer a means of identifying or confirming position and 

a mass of particular chemical modification made to a protein through mass shift 

observed in comparing the mass spectra of digested native and modified versions 

of the protein. 

The specific goal for this project is to develop a general methodology 

based on MALDI TOF MS for characterizing all possible products of a 

hemoglobin crosslinking reaction. 
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1. Identifying a99XLHb and f382XLHb cross-linked site by Trypsin 

Digestion 

The first phase of this project was concerned with optimizing our MALDI 

mass-mapping strategy with well characterized crosslinked hemoglobins. 

Therefore, we examined the mass spectra of f382XLHb and a99XLHb before and 

after digestion with trypsin and cyanogen bromide (CNBr). In order to peptide 

mass mapping by MALDI MS, we have to cleave the hemoglobin into small 

pieces. The reason to use trypsin was due to its specific cleavage at C-terminal 

of lysine and arginine, since most of the cross-linked sites were believed to be on 

lysine. If a cross-link is located between amino groups of lysine, it will prevent 

trypsin hydrolysis at this lysine. Therefore, a tryptic fragment will be composed 

of two cross linked tryptic peptides ( each containing an internal lysine). 

Location of the cross-linked site is achieved by comparing the mass of the cross­

linked peptides with all the possible combination of tryptic peptides plus the 

mass of the linker reagent. The fragments obtained from cross-linked 

hemoglobin are larger than any tryptic fragments produced by tryptic Hb A, thus, 

facilitating the identification of the bound sites. 

Hemoglobin A was used as one control experiment. MALDI MS analysis 

of tryptic digest of Hb A did not show all the expected tryptic fragments (Table 

4, 5, 6, 7 listed all the tryptic pieces and corresponding mass value from a and f3 
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chain respectively). Fig. 22 is a spectrum of tiyptic digested hemoglobin. Since 

Hb A contains two a chains and two J3 chains, with total molecular weight 

around 64,000 Da, it was not surprising that we did not cover all expected the 

peaks, but obtained the multiplicity of fragments produced. There were reports 

that coverage of the peptide mapping in a MALDI MS mass map generally 

decrease with increasing molecular weight of the protein (Juhasz et al., 1993 and 

Billeci et al., 1993), therefore, successful application of our strategy will require 

a partial separation of complicated peptide mixtures. 

For J382XLHb, with a fumarate cross-link between K8rJ3 l and K8rf32 of 

HbA, we expect to see two pieces composed of V6rK95 ([M+H]\a1c= 3073.5) 

linked by fumarate (mass 82) which causes a mass shift to (M+H)\aic = 

(3073.5x2+82+ 1) = 6230. For a99XLHb, another fumarate cross-linked Hb, the 

bonding site is believed to be between K99-a 1 and K99-a2, we expected to two 

tryptic peptide V93-K121 ([M+H]\a1c = 3770.5) linked by fumarate cause mass 

shift to (M+H)\a1c = (3770.5x2+82+ 1) = 7624. Under ideal conditions, we 

expect the fragments (M+Ht ca1c = 1670.9 for V61 -Ks2, and (M+H)\atc = 1422.6 

for G83-K95 for J382 XLHb to be absent and a new fragment at m/z 6230 appear. 

For a99XLHb, we expect the two fragments at (M+H)\a1c = 819.0 for V93-K99 

and (M+H)\a1c = 2969.5 for L100 -K127 to be absent, and a new fragment at m/z 
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7624 to appear in the mass spectrum. 

By comparing tryptic digest of XLHbP82 MALDI MS spectrum with Hb 

A, we were not able to generate useful information, because the expected peak 

m/z 6230 was not observed. As for tryptic digest of a99XLHb, we did observe a 

peak in the MS spectrum (Fig. 23), m/z 7623 consistent with what we calculated 

value (m/z 7624) for this cross-linked hemoglobin. However, peak abundance 

was near the limit of detection. The reason we did not observe fragment at m/z 

6230 for P82XLHb could be different ionized process for this fragment or 

detector saturation. However, we observed some peaks around 3000~4000 amu 

for both XLHba99 and XLHbP82, which not observed in the mass spectra of the 

Hb A. Fig. 24 and 25 are mass spectra of the P82XLHb and the a99XLHb 

tryptic digest. There were three peaks in the p 82XLHb, at m/z 3016, 3129, and 

3303. The peak at m/z 3129 is likely from the ~ 6-R104 fragment of the p chain 

plus the linker, and the peak at m/z 3303 is likely from the ~rR104 fragment of 

the p chain plus the linker. We observed a cluster of peaks at m/z 3896, m/z 

4178, and m/z 4493 in mass spectra of the a99XLHb tryptic digest. The peaks at 

m/z 3896, and m/z 4178 correspond to the V93-K121 and V91-K121 fragments of a 

chain respectively, each bound to a fumarate crosslink individually. Since we 

observed the fragment for the cross-linked hemoglobin in MALDI analysis, those 
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fragments m/z around 3000~4000 were likely due to the uncompleted 

crosslinking reaction. 

Table 4 

Hb f3 Chain tryptic digest fragments 

position in sequence Amino acid residues 

1-8 VHLTPEEK 

9-17 SAVTALWGK 

18-30 VNVDEVGGEALGR 

31-40 LLVVYPWTQR 

41-59 FFESFGDLSTPDA VMGNPK 

60-61 VK 

62-65 AHGK 

66 K 

67-82 VLGAFSDGLAHLDNLK 

83-95 GTFATLSELHCDK 

96-104 LHVDPENFR 

105-120 LLGNVLVCVLAHHFGK 

121-132 EFTPPVQAA YQK 

133-144 VVAGVANALAHK 

145-146 y 



position in Sequence 

1-7 

8-11 

12-16 

17-31 

32-40 

41-56 

57-60 

61 

62-90 

91-92 

93-99 

100-127 

128-139 

140-141 

76 

Table 5 

Hb a Chain tryptic digest fragments 

Amino Acid Residues 

VLSPAAK 

TNVK 

AAWGK 

VGAHAGEYGAEALER 

MFLSFPTTK 

TYFPHFDLSHGSAEVK 

GHGK 

K 

VADALTNAVAHVDDMPNALSALSDLHAHK 

LR 

VDPVNFK 

LLSHCLL VTLAAHLP AEFTP A VHASLDK 

FLASVSTVLTTSK 

YR 
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Table 6 

Hb a chain tryptic digest fragments corresponding mass value 

Position in sequence (M+Hf Position in sequence (M+Hf 

1-7 729.9 62-90 2998.4 

8-11 462.0 91-92 288.0 

12-16 532.6 93-99 819.0 

17-31 1530.6 100-127 2969.5 

32-40 1072.3 128-139 1253.5 

41-56 1835.0 140-141 338.0 

57-60 381.0 

Table 7 

Hb 13 chain tryptic digest fragments corresponding mass value 

Position in sequence (M+Hf Position in sequence (M+Hf 

1-8 952.1 67-82 1670.9 

9-17 933.1 83-95 1422.6 

18-30 1315.4 96-104 1127.2 

31-40 1275.5 105-120 1721.1 

41-59 2060.3 121-132 1379.6 

60-61 245.0 133-144 1150.4 

62-65 421.0 145-146 318.0 
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Because unlinked HbA t1yptic peptide mass mapping only gave small peptides, 

i.e. m/z <3000, we thought that microcon filter with a mass cut off of 3000 amu 

would be useful for isolating cross-linked tryptic fragments. However, since only 

those fragments in m/z 3000-m/z 4000 region were observed, the attempt failed. 

2. MALDI mass mapping of cross-linked hemoglobin with cyanogen bromide 

digestion 

The mass spectra of the tryptic digests did not yield significant abundance 

of the cross-linked tryptic fragments, therefore, we opted for a digestion process 

that would yield simpler spectra. 

Cyanogen bromide, in the presence of acid, cleaves the proteins at the C­

terminus of each methionine. Since proteins usually contain only a few 

methionine residues, cyanogen bromide digestion produces only a few peptides, 

making mass map spectra easier to interpret than the digest produced by trypsin. 

The cyanogen bromide digest fragments expected for unlinked human 

hemoglobin are listed in Table 8. 
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Table 8 

Hemoglobin A CNBr digest fragments corresponding mass values 

a Chain P Chain 

Position in sequence (M+Ht Position in sequence (M+Ht 

1-32 3264.7 1-55 6000.8 

33-76 4724.3 56-146 9806.4 

77-141 7032.3 

Screening of the unlinked Hb A and cross-linked Hb A cyanogen bromide 

digest fragments should provide insight into the primary cross-linked sites. The 

cross-linked sites are located either at p chain of lysine 82 or a chain of lysine 

99. Therefore, for f382XLHb we expect to see a fragment m/z 19694 and the 

fragment at m/z 9806 at reduced abundance compared to the CNBr digest of 

hemoglobin A. In the spectra of a99XLHb CNBr digest, we expect to observe a 

peptide fragment at m/z 14135. We expect the fragment at m/z 7026 to be weak 

or not observed at all in the spectra of the a99XLHb CNBr digest. The MALDI 

mass spectra of the CNBr digests of the a99XLHb, f382XLHb and Hb A are 

given in Fig. 26-28 respectively. The spectrum of hemoglobin A yield all five 
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expected fragments. The MALDI spectra of the a99XLHb shows four 

fragments. The fragment at m/z 7026 was not observed as we expected, 

however, the cross-linked fragment at m/z 14135 was absent as well. The 

f382XLHb CNBr digest spectra gave four fragments as well. The fragment at m/z 

9806 was not observed, suggesting that this fragment was cross-linked. A weak 

signal corresponding to the cross-linked fragment was observed at m/z 19694. 

Since cyanogen bromide digest only cleave on C-terminal of methionine, and one 

CNBr of fragment contains many lysines, we can not know exactly which of 

these lysines are bound, therefore, it can not provide exact information of the 

binding site. 

The CNBr digest of both cross-linked HbA ( either at a-99 lysine or f3-82 

lysine) produce cross-linked fragments whose mass value greater than 10,000 

amu. So we sought to isolate these fragments with a centricon mass 10,000 cut­

off filter, then to do tryptic digestion and MALDI MS analyses. The MALDI MS 

analysis of the tryptic fragments should cover the whole digest of the crosslinked 

CNBr fragments unlike the tryptic digest of the entire cross-linked HbA. 

Therefore, we opted to evaluate the strategy delineated in the scheme 6 to 

characterize the cross-linked products. 
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The MALDI mass spectrum shown in Fig. 29 was recorded from a tryptic 

digest of cyanogen bromide fragments of cross-linked human hemoglobin by 
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fwnarate at lysine 99 position in the a chain, yield only a suggestion of the 

expected cross-linked tryptic fragment at m/z 7623. The tryptic peptide V93-K121 

of the a chain of Hb A has a calculated molecular weight of 3770.5 and one 

internal lysine residue at position 99. A fwnarate cross-link (causes a mass shift 

of 82 amµ) between K99-al and K99-al of Hb A tetramer would be expected to 

produce a MALDI MS ion of the type (M+H)\a1ci = 3770.5x2+82+ 1 = 7632. An 

observed signal at m/z =7623 provides experimental evidence for a fumarate K99-

al and K99-a2 cross-link. 

A MALDI spectrwn of the tryptic digest of the crosslinked CNBr 

fragment from f382XLHb is given in Fig. 30. The tryptic peptide V6rK95 of the 

p chain of HbA has a calculated molecular weight of 3073.5 and one internal 

lysine residue at position 82. A fumarate cross-link between K8rP 1 and K8rf32 

of the HbA tetramer would be expected to produce a MALDI MS ion of the 

type(M+Ht = (3073.5x2+86+ 1) = 6223. The signal at m/z 6224 provides 

experimental evidence. For a fwnarate K8rf31 and K8rf32 cross-link. Further 

evidence for localization of this chemical modification for the fragment observed 

at m/z 7337.0. In this case, the partial tryptic peptide V6rR104 of the P chain of 

HbA (Zaluzec et al., 1995), having a calculated molecular weight of 4182.0, 

produced MALDI MS ions of the type (M+H)\ac1 = [(3073.5+4182.7) +82+ 1) = 
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7336.2. These results indicate the method was successful in identifying the sites 

of the cross-linked hemoglobin. 

In summarization, we confirmed the positions of cross-linked site for J382 

XLHb and a99XLHb. The mass mapping for identifying cross-linked 

hemoglobin binding site may be applied to the analysis of an unknown cross­

linked hemoglobin site. 

3. Identifying unknown cross-linked hemoglobin 

3,3',4,4'-Benzophenone tetra(3,5-dibromosalicylate) (BPTA) is a cross­

linking reagent synthesized by Dr. Olsen's group. There were four possible 

cross-linked sites in the reagent. Once this reagent reacted with hemoglobin, it is 

possible to tetralink the hemoglobin (see scheme 7). The proposed cross-linking 

sites are located at J3 chains of internal valine 1 position and lysine 82 position. 

In order to find useful information, we did MALDI mass analyses on the 

CNBr digest of this product. If the cross-linking reaction take places proposed, 

we expect fragments at m/z 6000.8 and m/z 8906 to be weak or absent, and 

expect to observe a fragment at m/z 31,903 (linker mass plus the mass of two J3 

chains). Under current instrument condition, it is very difficult for us to observe 

this fragment. 
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Fig. 31 is a MALDI spectrum of BPTA cross-linked Hb CNBr digest. 

There are four peaks in the spectrum. The fragments at m/z 9806 and m/z at 

7032 were not observed, suggesting that these two fragments were cross-linked. 

A signal at corresponding to m/z 8292 was observed. We are not sure the origin 

of m/z 8292. Therefore, the only information we get so far is the cross-linking 

reaction possible take place between both a chain and f3 chain other than just in 

f3 chain. 
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