112 research outputs found

    Novel frataxin isoforms may contribute to the pathological mechanism of friedreich ataxia

    Get PDF
    This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.Friedreich ataxia (FRDA) is an inherited neurodegenerative disease caused by frataxin (FXN) deficiency. The nervous system and heart are the most severely affected tissues. However, highly mitochondria-dependent tissues, such as kidney and liver, are not obviously affected, although the abundance of FXN is normally high in these tissues. In this study we have revealed two novel FXN isoforms (II and III), which are specifically expressed in affected cerebellum and heart tissues, respectively, and are functional in vitro and in vivo. Increasing the abundance of the heart-specific isoform III significantly increased the mitochondrial aconitase activity, while over-expression of the cerebellum-specific isoform II protected against oxidative damage of Fe-S cluster-containing aconitase. Further, we observed that the protein level of isoform III decreased in FRDA patient heart, while the mRNA level of isoform II decreased more in FRDA patient cerebellum compared to total FXN mRNA. Our novel findings are highly relevant to understanding the mechanism of tissue-specific pathology in FRDA.This work was supported by the intramural program of the National Institute of Child Health and Human Development, National Institutes of Health, and in part by Friedreich ataxia research association; by the National Nature Science Foundation of China (NSFC) (No. 31071085), by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, and by State Key Laboratory of Pharmaceutical Biotechnology (No. ZZYJ-SN-201006). Zvonimir Marelja was supported by a grant from the Studienstiftung des Deutschen Volkes and by Deutscher Akademischer Austauschdienst scholarship. Additional support was obtained from the Deutsche Forschungsgemeinschaft Grant SL1171/5-3

    A Comparative Genome Analysis of \u3cem\u3eCercospora sojina\u3c/em\u3e with Other Members of the Pathogen Genus \u3cem\u3eMycosphaerella\u3c/em\u3e on Different Plant Hosts

    Get PDF
    Fungi are the causal agents of many of the world\u27s most serious plant diseases causing disastrous consequences for large-scale agricultural production. Pathogenicity genomic basis is complex in fungi as multicellular eukaryotic pathogens. Here, we report the genome sequence of C. sojina, and comparative genome analysis with plant pathogen members of the genus Mycosphaerella (Zymoseptoria. tritici (synonyms M. graminicola), M. pini, M. populorum and M. fijiensis - pathogens of wheat, pine, poplar and banana, respectively). Synteny or collinearity was limited between genomes of major Mycosphaerella pathogens. Comparative analysis with these related pathogen genomes indicated distinct genome-wide repeat organization features. It suggests repetitive elements might be responsible for considerable evolutionary genomic changes. These results reveal the background of genomic differences and similarities between Dothideomycete species. Wide diversity as well as conservation on genome features forms the potential genomic basis of the pathogen specialization, such as pathogenicity to woody vs. herbaceous hosts. Through comparative genome analysis among five Dothideomycete species, our results have shed light on the genome features of these related fungi species. It provides insight for understanding the genomic basis of fungal pathogenicity and disease resistance in the crop hosts

    The induction of macrophage gene expression by LPS predominantly utilizes Myd88-independent signaling cascades

    Get PDF
    Myeloid differentiation protein-88 (MyD88) is a signal adaptor protein required for cytokine production following engagement of Toll-like receptors (TLRs) by their cognate ligands. Activation of both TLR-3 and TLR-4, however, can engage signaling events independent of MyD88 expression. The relative importance of these MyD88-dependent and -independent signaling pathways in the macrophage response to lipopolysaccharide (LPS) is unknown. Here we define these events using microarray expression profiling of LPS-stimulated macrophages taken from MyD88-null and wild-type mice. Of the 1,055 genes found to be LPS responsive, only 21.5% were dependent on MyD88 expression, with MyD88-independent genes constituting 74.7% of the genetic response. This MyD88-independent gene expression was predominantly transcriptionally regulated, as it was unaffected by cycloheximide blockade of new protein synthesis. A previously undescribed group of LPS-regulated genes (3.8%), whose induction or repression was significantly greater in the absence of MyD88, was also identified by these studies. The regulation of these genes suggested that MyD88 could serve as a molecular brake, constraining gene activity in a subset of LPS-responsive genes. The findings generated with LPS stimulation were recapitulated by exposure of macrophages to live Escherichia coli. These expression-profiling studies redefine the current dogma of TLR-4 signaling and establish that MyD88, although essential for some of the best-characterized macrophage responses to LPS, is not required for the regulation of the majority of genes engaged by macrophage exposure to endotoxin or live bacteria

    Study on the sound absorption behavior of multi-component polyester nonwovens: experimental and numerical methods

    Get PDF
    This study presents an investigation of the acoustical properties of multi-component polyester nonwovens with experimental and numerical methods. Fifteen types of nonwoven samples made with staple, hollow and bi-component polyester fibers were chosen to carry out this study. The AFD300 AcoustiFlow device was employed to measure airflow resistivity. Several models were grouped in theoretical and empirical model categories and used to predict the airflow resistivity. A simple empirical model based on fiber diameter and fabric bulk density was obtained through the power-fitting method. The difference between measured and predicted airflow resistivity was analyzed. The surface impedance and sound absorption coefficient were determined by using a 45 mm Materiacustica impedance tube. Some widely used impedance models were used to predict the acoustical properties. A comparison between measured and predicted values was carried out to determine the most accurate model for multi-component polyester nonwovens. The results show that one of the Tarnow model provides the closest prediction to the measured value, with an error of 12%. The proposed power-fitted empirical model exhibits a very small error of 6.8%. It is shown that the Delany–Bazley and Miki models can accurately predict surface impedance of multi-component polyester nonwovens, but the Komatsu model is less accurate, especially at the low-frequency range. The results indicate that the Miki model is the most accurate method to predict the sound absorption coefficient, with a mean error of 8.39%

    Expression of Human Frataxin Is Regulated by Transcription Factors SRF and TFAP2

    Get PDF
    Friedreich ataxia is an autosomal recessive neurodegenerative disease caused by reduced expression levels of the frataxin gene (FXN) due to expansion of triplet nucleotide GAA repeats in the first intron of FXN. Augmentation of frataxin expression levels in affected Friedreich ataxia patient tissues might substantially slow disease progression.We utilized bioinformatic tools in conjunction with chromatin immunoprecipitation and electrophoretic mobility shift assays to identify transcription factors that influence transcription of the FXN gene. We found that the transcription factors SRF and TFAP2 bind directly to FXN promoter sequences. SRF and TFAP2 binding sequences in the FXN promoter enhanced transcription from luciferase constructs, while mutagenesis of the predicted SRF or TFAP2 binding sites significantly decreased FXN promoter activity. Further analysis demonstrated that robust SRF- and TFAP2-mediated transcriptional activity was dependent on a regulatory element, located immediately downstream of the first FXN exon. Finally, over-expression of either SRF or TFAP2 significantly increased frataxin mRNA and protein levels in HEK293 cells, and frataxin mRNA levels were also elevated in SH-SY5Y cells and in Friedreich ataxia patient lymphoblasts transfected with SRF or TFAP2.We identified two transcription factors, SRF and TFAP2, as well as an intronic element encompassing EGR3-like sequence, that work together to regulate expression of the FXN gene. By providing new mechanistic insights into the molecular factors influencing frataxin expression, our results should aid in the discovery of new therapeutic targets for the treatment of Friedreich ataxia

    Systematic identification of conserved motif modules in the human genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification of motif modules, groups of multiple motifs frequently occurring in DNA sequences, is one of the most important tasks necessary for annotating the human genome. Current approaches to identifying motif modules are often restricted to searches within promoter regions or rely on multiple genome alignments. However, the promoter regions only account for a limited number of locations where transcription factor binding sites can occur, and multiple genome alignments often cannot align binding sites with their true counterparts because of the short and degenerative nature of these transcription factor binding sites.</p> <p>Results</p> <p>To identify motif modules systematically, we developed a computational method for the entire non-coding regions around human genes that does not rely upon the use of multiple genome alignments. First, we selected orthologous DNA blocks approximately 1-kilobase in length based on discontiguous sequence similarity. Next, we scanned the conserved segments in these blocks using known motifs in the TRANSFAC database. Finally, a frequent pattern mining technique was applied to identify motif modules within these blocks. In total, with a false discovery rate cutoff of 0.05, we predicted 3,161,839 motif modules, 90.8% of which are supported by various forms of functional evidence. Compared with experimental data from 14 ChIP-seq experiments, on average, our methods predicted 69.6% of the ChIP-seq peaks with TFBSs of multiple TFs. Our findings also show that many motif modules have distance preference and order preference among the motifs, which further supports the functionality of these predictions.</p> <p>Conclusions</p> <p>Our work provides a large-scale prediction of motif modules in mammals, which will facilitate the understanding of gene regulation in a systematic way.</p

    Topography of calcium phosphate ceramics regulates primary cilia length and TGF receptor recruitment associated with osteogenesis

    Get PDF
    The surface topography of synthetic biomaterials is known to play a role in material-driven osteogenesis. Recent studies show that TGFβ signalling also initiates osteogenic differentiation. TGFβ signalling requires the recruitment of TGFβ receptors (TGFβR) to the primary cilia. In this study, we hypothesize that the surface topography of calcium phosphate ceramics regulates stem cell morphology, primary cilia structure and TGFβR recruitment to the cilium associated with osteogenic differentiation. We developed a 2D system using two types of tricalcium phosphate (TCP) ceramic discs with identical chemistry. One sample had a surface topography at micron-scale (TCP-B, with a bigger surface structure dimension) whilst the other had a surface topography at submicron scale (TCP-S, with a smaller surface structure dimension). In the absence of osteogenic differentiation factors, human bone marrow stromal cells (hBMSCs) were more spread on TCP-S than on TCP-B with alterations in actin organization and increased primary cilia prevalence and length. The cilia elongation on TCP-S was similar to that observed on glass in the presence of osteogenic media and was followed by recruitment of transforming growth factor-β RII (p-TGFβ RII) to the cilia axoneme. This was associated with enhanced osteogenic differentiation of hBMSCs on TCP-S, as shown by alkaline phosphatase activity and gene expression for key osteogenic markers in the absence of additional osteogenic growth factors. Similarly, in vivo after a 12-week intramuscular implantation in dogs, TCP-S induced bone formation while TCP-B did not. It is most likely that the surface topography of calcium phosphate ceramics regulates primary cilia length and ciliary recruitment of p-TGFβ RII associated with osteogenesis and bone formation. This bioengineering control of osteogenesis via primary cilia modulation may represent a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery applications. Statement of Significance The surface topography of synthetic biomaterials plays important roles in material-driven osteogenesis. The data presented herein have shown that the surface topography of calcium phosphate ceramics regulates mesenchymal stromal cells (e.g., human bone marrow mesenchymal stromal cells, hBMSCs) with respect to morphology, primary cilia structure and TGFβR recruitment to the cilium associated with osteogenic differentiation in vitro. Together with bone formation in vivo, our results suggested a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery by the bioengineering control of osteogenesis via primary cilia modulation
    corecore