35 research outputs found
Identification of a novel regulatory mechanism involved in inhibition of transcription of suvivin mRNA in breast cancer cells via p21cip–mediated regulation
Purpose: To evaluate the effect of p21Cip1 on survivin transcription levels in breast carcinoma, and to investigate the potential mechanisms.Methods: Epirubicin, a p21Cip1 activator, was used to treat MCF7 cells. Under the action of normal biological functions of p53, pEGFP-C2-p21 was transfected into MCF7 cells by lipofectamine and positive clones were screened out with G418. The expression levels of p21cip1, p53 and survivin mRNA were quantitated by real-time fluorescent polymerase chain reaction (RQ-PCR). MTT assay was utilized to measure cellular viability and proliferation after transfection. Flow cytometry was employed to determine the cell cycle. Hoechst 33342 staining was carried out to assess cell apoptosis. Lastly, several transcription factor sites located at the promoter region of survivin gene, such as, sp1 site, E2F site and p300/CBP, were measured by p21 overexpression using RT-PCR.Results: Following epirubicin treatment, within 24 h, the expression levels of endogenous p21cip1 and p53 were up-regulated, whereas that of survivin was down-regulated. After transfection treatment, p21 inhibited the proliferation of MCF7 cells on days 3 and 4, and MCF7 cells overexpressed p21 mRNA, whereas the level of survivin mRNA in MCF7-p21 groups was markedly down-regulated relative to control group, but overexpression of p21 was not sufficient to cause changes in p53 gene expression. The overexpressed p21 resulted in G1/G0 phase arrest based on cell cycle analysis, but apoptosis was not induced. In addition, co-transcription factors E2F-1, sp1 and p300/CBP mRNA levels decreased significantly compared with normal p21 expression groups.Conclusion: P21cip1 may down-regulate the expression of survivin gene partially by inhibiting the expression level of HAT.Keywords: Cyclin-dependent kinase inhibitor 1, Phosphoprotein p53, Survivin, Breast carcinoma, G1/G0 phase arrest, Epirubicin, Lipofectamin
Foot-and-mouth disease virus 2C is a hexameric AAA+ protein with a coordinated ATP hydrolysis mechanism.
Foot-and-mouth disease virus (FMDV), a positive sense, single-stranded RNA virus, causes a highly contagious disease in cloven-hoofed livestock. Like other picornaviruses, FMDV has a conserved 2C protein assigned to the superfamily 3 helicases a group of AAA+ ATPases that has a predicted N-terminal membrane-binding amphipathic helix attached to the main ATPase domain. In infected cells, 2C is involved in the formation of membrane vesicles, where it co-localizes with viral RNA replication complexes, but its precise role in virus replication has not been elucidated. We show here that deletion of the predicted N-terminal amphipathic helix enables overexpression in Escherichia coli of a highly soluble truncated protein, 2C(34–318), that has ATPase and RNA binding activity. ATPase activity was abrogated by point mutations in the Walker A (K116A) and B (D160A) motifs and Motif C (N207A) in the active site. Unliganded 2C(34–318) exhibits concentration-dependent self-association to yield oligomeric forms, the largest of which is tetrameric. Strikingly, in the presence of ATP and RNA, FMDV 2C(34–318) containing the N207A mutation, which binds but does not hydrolyze ATP, was found to oligomerize specifically into hexamers. Visualization of FMDV 2C-ATP-RNA complexes by negative stain electron microscopy revealed hexameric ring structures with 6-fold symmetry that are characteristic of AAA+ ATPases. ATPase assays performed by mixing purified active and inactive 2C(34–318) subunits revealed a coordinated mechanism of ATP hydrolysis. Our results provide new insights into the structure and mechanism of picornavirus 2C proteins that will facilitate new investigations of their roles in infection
The genome and transcriptome of Japanese flounder provide insights into flatfish asymmetry
Flatfish have the most extreme asymmetric body morphology of vertebrates. During metamorphosis, one eye migrates to the contralateral side of the skull, and this migration is accompanied by extensive craniofacial transformations and simultaneous development of lopsided body pigmentation(1-5). The evolution of this developmental and physiological innovation remains enigmatic. Comparative genomics of two flatfish and transcriptomic analyses during metamorphosis point to a role for thyroid hormone and retinoic acid signaling, as well as phototransduction pathways. We demonstrate that retinoic acid is critical in establishing asymmetric pigmentation and, via cross-talk with thyroid hormones, in modulating eye migration. The unexpected expression of the visual opsins from the phototransduction pathway in the skin translates illumination differences and generates retinoic acid gradients that underlie the generation of asymmetry. Identifying the genetic underpinning of this unique developmental process answers long-standing questions about the evolutionary origin of asymmetry, but it also provides insight into the mechanisms that control body shape in vertebrates.National Natural Science Foundation of China [31130057, 31461163005, 31530078, 31472269, 31472262, 31472273]; State 863 High Technology R&D Project of China [2012AA092203, 2012AA10A408, 2012AA10A403-2]; Education and Research of Guangdong Province [2013B090800017]; Taishan Scholar Climb Project Fund of Shandong of China; Taishan Scholar Project Fund of Shandong of China for Young Scientists; Shanghai Universities First-class Disciplines Project of Fisheries; Program for Professor of Special Appointment (Eastern Scholar) at the Shanghai Institutions of Higher Learning; Shanghai Municipal Science, Special Project on the Integration of Industryinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/publishedVersio
Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study
Summary
Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally.
Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies
have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of
the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income
countries globally, and identified factors associated with mortality.
Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to
hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis,
exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a
minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical
status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary
intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause,
in-hospital mortality for all conditions combined and each condition individually, stratified by country income status.
We did a complete case analysis.
Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital
diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal
malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome
countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male.
Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3).
Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income
countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups).
Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome
countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries;
p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients
combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11],
p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20
[1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention
(ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety
checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed
(ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of
parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65
[0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality.
Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome,
middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will
be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger
than 5 years by 2030
Clinical Value of Combined Determination of Serum B7-H4 with Carcinoembryonic Antigen, Osteopontin, or Tissue Polypeptide-Specific Antigen for the Diagnosis of Colorectal Cancer
Aim. B7-H4 is member of the B7 family that negatively regulates the immune response, which are associated with tumor development and prognosis. The present study is aimed at examining serum B7-H4 expression and exploring its contribution to diagnosis in patients with colorectal cancer. Methods. We determined serum expressions of B7-H4, carcinoembryonic antigen (CEA), osteopontin (OPN), and tissue polypeptide-specific antigen (TPS) in 59 patients with colorectal cancer and 29 healthy volunteers and analyzed the diagnostic value of B7-H4 combined with CEA, OPN, or TPS detection for colorectal cancer. B7-H4, OPN, and TPS serum expressions were measured by enzyme-linked immunosorbent assay, and CEA was measured by electrochemical luminescence detection. Results. Serum B7-H4 levels were significantly higher in colorectal cancer patients compared with paired normal controls (P=0.001). B7-H4 serum level was positively correlated with infiltration depth, tumor masses, and lymph node metastasis (P=0.004, P=0.016, and P=0.0052, respectively). We also detected serum expression of B7-H4 before and after radical resection and showed that B7-H4 levels decreased significantly during the first week postoperation (P=0.0064). We used receiver operating characteristic (ROC) curve analysis to indicate the potential diagnostic values of these markers. The areas under the ROC curves (AUC) for B7-H4, OPN, TPS, and CEA were 0.867, 0.805, 0.812, and 0.833, respectively. The optimal sensitivity and specificity of B7-H4 for discriminating between colon cancer patients and healthy controls were 88.2% and 86.7%, respectively, using a cut-off of value of 78.89 ng/mL. However, combined ROC analysis using B7-H4 and CEA revealed an AUC of 0.929, with a sensitivity of 98.9% and a specificity of 80.4% for discriminating colon cancer patients from healthy controls. Conclusions. B7-H4 was highly expressed in the serum in colorectal cancer patients. Detection of B7-H4 plus CEA showed significantly increased sensitivity and specificity for discriminating between colorectal cancer patients and healthy controls compared to individual detection of these markers. Combined detection of serum B7-H4 and CEA may thus have the potential to become a new laboratory method for the early clinical diagnosis and prognostic evaluation of colorectal cancer
Correction to: Targeted radiotherapy of pigmented melanoma with 131I-5-IPN
Abstract In the publication of this article [1], there is an error in affiliation 1. The revised affiliation has now been included in this correction
The effect of double W tension-reduced suture technique on the abdominal scars following the da Vinci robot-assisted gastrectomy for severely obese patients
Abstract Objective To analyze the effect of a new type of tension-reduced suture named “double W tension-reduced suture technique” on the abdominal scars following the da Vinci robot-assisted gastrectomy for severely obese patients. Methods 40 abdominal incisions following the da Vinci robot-assisted gastrectomy on severely obese patients from September 1st, 2021 to March 1st, 2022 were comprised in the study. 20 incisions were closed by the conventional full-thickness surgical suture as the control group, and 20 incisions were sewn up by double W tension-reduced suture as the double W group. The scars were assessed at the 1-month follow-up visit using the Vancouver scar scale (VSS), ultrasound and patient satisfaction. Meanwhile, digital photographs of scars were taken as well. Results The VSS score was 6.80 ± 2.16 in the control group, while that of the double W group was 2.60 ± 1.89. The difference between groups was significant. Digital photographs showed that the scar color was not only light and close to the skin color, but also flat and soft in the double W group. Ultrasound showed that the fibers of subcutaneous tissue in the double W group were arranged neatly, the ultrasonic signal intensity was relatively uniform, and the tunnel was small without obvious lacunae. More patients were satisfied and very satisfied with scars in the double W group. Conclusion Double W tension-reduced suture technique could significantly improve the appearance and reduce comorbidities of scars following the da Vinci robot-assisted gastrectomy for severely obese patients
Targeted radiotherapy of pigmented melanoma with 131I-5-IPN
Abstract Purpose There has been no satisfactory treatment for advanced melanoma until now. Targeted radionuclide therapy (TRNT) may be a promising option for this heretofore lethal disease. Our goal in this study was to synthesize 131I-N-(2-(diethylamino)ethyl)-5-(iodo-131I)picolinamide (131I-5-IPN) and evaluate its therapeutic ability and toxicity as a radioiodinated melanin-targeting therapeutic agent. Methods The trimethylstannyl precursor was synthesized and labeled with 131I to obtain 131I-5-IPN. The pharmacokinetics of 131I-5-IPN was evaluated through SPECT imaging, and its biodistribution was assessed in B16F10 tumor models and in A375 human-to-mouse xenografts. For TRNT, B16F10 melanoma-bearing mice were randomly allocated to receive one of five treatments (n = 10 per group): group A (the control group) received 0.1 mL saline; group B was treated with an equimolar dose of unlabeled precursor; group C received 18.5 MBq of [131I]NaI; group D and E received one or two dose of 18.5 MBq 131I-5-IPN, respectively. TRNT efficacy was evaluated through tumor volume measurement and biology study. The toxic effects of 131I-5-IPN on vital organs were assessed with laboratory tests and histopathological examination. The radiation absorbed dose to vital organs was estimated based on biodistribution data. Results 131I-5-IPN was successfully prepared with a good radiochemistry yield (55% ± 5%, n = 5), and it exhibited a high uptake ratio in melanin-positive B16F10 cells which indicating high specificity. SPECT imaging and biodistribution of 131I-5-IPN showed lasting high tumor uptake in pigmented B16F10 models for 72 h. TRNT with 131I-5-IPN led to a significant anti-tumor effect and Groups D and E displayed an extended median survival compared to groups A, B, and C. The highest absorbed dose to a vital organ was 0.25 mSv/MBq to the liver; no obvious injury to the liver or kidneys was observed during treatment. 131I-5-IPN treatment was associated with reduction of expression of proliferating cell nuclear antigen (PCNA) and Ki67 and cell cycle blockage in G2/M phase in tumor tissues. Decreased vascular endothelial growth factor and CD31 expression, implying reduced tumor growth, was noted after TRNT. Conclusion We successfully synthesized 131I-5-IPN, which presents long-time retention in melanotic melanoma. TRNT with 131I-5-IPN has the potential to be a safe and effective strategy for management of pigmented melanoma