695 research outputs found

    Decoupling Pseudo Label Disambiguation and Representation Learning for Generalized Intent Discovery

    Full text link
    Generalized intent discovery aims to extend a closed-set in-domain intent classifier to an open-world intent set including in-domain and out-of-domain intents. The key challenges lie in pseudo label disambiguation and representation learning. Previous methods suffer from a coupling of pseudo label disambiguation and representation learning, that is, the reliability of pseudo labels relies on representation learning, and representation learning is restricted by pseudo labels in turn. In this paper, we propose a decoupled prototype learning framework (DPL) to decouple pseudo label disambiguation and representation learning. Specifically, we firstly introduce prototypical contrastive representation learning (PCL) to get discriminative representations. And then we adopt a prototype-based label disambiguation method (PLD) to obtain pseudo labels. We theoretically prove that PCL and PLD work in a collaborative fashion and facilitate pseudo label disambiguation. Experiments and analysis on three benchmark datasets show the effectiveness of our method.Comment: Accepted at ACL2023 main conferenc

    The genome of polymorphonuclear neutrophils maintains normal coding sequences

    Get PDF
    Genetic studies often use genomic DNA from whole blood cells, of which the majority are the polymorphonuclear myeloid cells. Those cells undergo dramatic change of nuclear morphology following cellular differentiation. It remains elusive if the nuclear morphological change accompanies sequence alternations from the intact genome. If such event exists, it will cause a serious problem in using such type of genomic DNA for genetic study as the sequences will not represent the intact genome in the host individuals. Using exome sequencing, we compared the coding regions between neutrophil, which is the major type of polymorphonuclear cells, and CD4+ T cell, which has an intact genome, from the same individual. The results show that exon sequences between the two cell types are essentially the same. The minor differences represented by the missed exons and base changes between the two cell types were validated to be mainly caused by experimental errors. Our study concludes that genomic DNA from whole blood cells can be safely used for genetic studies

    Effects of resveratrol supplementation on methotrexate chemotherapy‐induced bone loss

    Get PDF
    Intensive cancer chemotherapy is known to cause bone defects, which currently lack treatments. This study investigated the effects of polyphenol resveratrol (RES) in preventing bone defects in rats caused by methotrexate (MTX), a commonly used antimetabolite in childhood oncology. Young rats received five daily MTX injections at 0.75 mg/kg/day. RES was orally gavaged daily for seven days prior to, and during, five‐day MTX administration. MTX reduced growth plate thickness, primary spongiosa height, trabecular bone volume, increased marrow adipocyte density, and increased mRNA expression of the osteogenic, adipogenic, and osteoclastogenic factors in the tibial bone. RES at 10 mg/kg was found not to affect bone health in normal rats, but to aggravate the bone damage in MTX‐treated rats. However, RES supplementation at 1 mg/kg preserved the growth plate, primary spongiosa, bone volume, and lowered the adipocyte density. It maintained expression of genes involved in osteogenesis and decreased expression of adipogenic and osteoclastogenic factors. RES suppressed osteoclast formation ex vivo of bone marrow cells from the treated rats. These data suggest that MTX can enhance osteoclast and adipocyte formation and cause bone loss, and that RES supplementation at 1 mg/kg may potentially prevent these bone defects

    The investigation of status of human parasites in children from Yushu

    Get PDF
    目的  调查青海省玉树县震后转移安置学生的肠道寄生虫感染情况。方法  粪便直接涂片法检查虫卵。结果  512份粪便样品中,寄生虫阳性粪便31份,感染率为6.05%。其中,结肠内阿米巴20例,感染率为3.91%;蓝氏贾第鞭毛虫8例,感染率为1.56%;蛔虫3例,感染率0.59%。结论  玉树的学生肠道寄生虫的感染率均不高于全国平均水平。Objective: To investigate the status of human parasites in children who have been evacuated here from Yushu after earthquake. Methods: Detect the eggs from smear feces samples. Results: 512 stool samples were collected and examined by microscope. The total infection rate was 6.05%, where the infection rate for entamoeba coli Grassi was 3.91%, Giardia lamblia stile was 1.56%, Ascaris Lumbricoides was 0.59%. Conclusion: Our results suggest that the infection rate of human parasites is not higher than normal rate in China

    New fusion transcripts identified in normal karyotype acute myeloid leukemia

    Get PDF
    Genetic aberrations contribute to acute myeloid leukemia (AML). However, half of AML cases do not contain the well-known aberrations detectable mostly by cytogenetic analysis, and these cases are classified as normal karyotype AML. Different outcomes of normal karyotype AML suggest that this subgroup of AML could be genetically heterogeneous. But lack of genetic markers makes it difficult to further study this subgroup of AML. Using paired-end RNAseq method, we performed a transcriptome analysis in 45 AML cases including 29 normal karyotype AML, 8 abnormal karyotype AML and 8 AML without karyotype informaiton. Our study identified 134 fusion transcripts, all of which were formed between the partner genes adjacent in the same chromosome and distributed at different frequencies in the AML cases. Seven fusions are exclusively present in normal karyotype AML, and the rest fusions are shared between the normal karyotype AML and abnormal karyotype AML. CIITA, a master regulator of MHC class II gene expression and truncated in B-cell lymphoma and Hodgkin disease, is found to fuse with DEXI in 48% of normal karyotype AML cases. The fusion transcripts formed between adjacent genes highlight the possibility that certain such fusions could be involved in oncological process in AML, and provide a new source to identify genetic markers for normal karyotype AML

    Superconductivity in trilayer nickelate La4Ni3O10 under pressure

    Full text link
    Nickelates gained a great deal of attention due to their similar crystal and electronic structures of cuprates over the past few decades. Recently, superconductivity with transition temperature exceeding liquid-nitrogen temperature is discovered in La3Ni2O7, which belong to the Ruddlesden-Popper (RP) phases Lan+1NinO3n+1 with n = 2. In this work, we go further and find pressure-induced superconductivity in another RP phase La4Ni3O10 (n = 3) single crystals. Our angle-resolved photoemission spectroscopy (ARPES) experiment suggest that the electronic structure of La4Ni3O10 is very similar to that of La3Ni2O7. We find that the density-wave like anomaly in resistivity is progressively suppressed with increasing pressure. A typical phase diagram is obtained with the maximum Tc of 21 Kelvin. Our study sheds light on the exploration of unconventional superconductivity in nickelates.Comment: 16 pages, 5 figure

    Construction and evaluation of endometriosis diagnostic prediction model and immune infiltration based on efferocytosis-related genes

    Get PDF
    Background: Endometriosis (EM) is a long-lasting inflammatory disease that is difficult to treat and prevent. Existing research indicates the significance of immune infiltration in the progression of EM. Efferocytosis has an important immunomodulatory function. However, research on the identification and clinical significance of efferocytosis-related genes (EFRGs) in EM is sparse.Methods: The EFRDEGs (differentially expressed efferocytosis-related genes) linked to datasets associated with endometriosis were thoroughly examined utilizing the Gene Expression Omnibus (GEO) and GeneCards databases. The construction of the protein-protein interaction (PPI) and transcription factor (TF) regulatory network of EFRDEGs ensued. Subsequently, machine learning techniques including Univariate logistic regression, LASSO, and SVM classification were applied to filter and pinpoint diagnostic biomarkers. To establish and assess the diagnostic model, ROC analysis, multivariate regression analysis, nomogram, and calibration curve were employed. The CIBERSORT algorithm and single-cell RNA sequencing (scRNA-seq) were employed to explore immune cell infiltration, while the Comparative Toxicogenomics Database (CTD) was utilized for the identification of potential therapeutic drugs for endometriosis. Finally, immunohistochemistry (IHC) and reverse transcription quantitative polymerase chain reaction (RT-qPCR) were utilized to quantify the expression levels of biomarkers in clinical samples of endometriosis.Results: Our findings revealed 13 EFRDEGs associated with EM, and the LASSO and SVM regression model identified six hub genes (ARG2, GAS6, C3, PROS1, CLU, and FGL2). Among these, ARG2, GAS6, and C3 were confirmed as diagnostic biomarkers through multivariate logistic regression analysis. The ROC curve analysis of GSE37837 (AUC = 0.627) and GSE6374 (AUC = 0.635), along with calibration and DCA curve assessments, demonstrated that the nomogram built on these three biomarkers exhibited a commendable predictive capacity for the disease. Notably, the ratio of nine immune cell types exhibited significant differences between eutopic and ectopic endometrial samples, with scRNA-seq highlighting M0 Macrophages, Fibroblasts, and CD8 Tex cells as the cell populations undergoing the most substantial changes in the three biomarkers. Additionally, our study predicted seven potential medications for EM. Finally, the expression levels of the three biomarkers in clinical samples were validated through RT-qPCR and IHC, consistently aligning with the results obtained from the public database.Conclusion: we identified three biomarkers and constructed a diagnostic model for EM in this study, these findings provide valuable insights for subsequent mechanistic research and clinical applications in the field of endometriosis

    Direct Electrochemistry and Electrocatalysis of Hemoglobin at Mesoporous Carbon Modified Electrode

    Get PDF
    The novel highly ordered mesoporous carbon (known as FDU-15), prepared by the organic-organic self-assembly method was been used for first time for the immobilization of hemoglobin (Hb) and its bioelectrochemical properties were studied. The resulting Hb/FDU-15 film provided a favorable microenvironment for Hb to perform direct electron transfers at the electrode. The immobilized Hb also displayed its good electrocatalytic activity for the reduction of hydrogen peroxide. The results demonstrate that mesoporous carbon FDU-15 can improve the Hb loading with retention of its bioactivity and greatly promote the direct electron transfer, which can be attributed to its high specific surface area, uniform ordered porous structure, suitable pore size and biocompatibility. Our present study may provide an alternative way for the construction of nanostructure biofunctional surfaces and pave the way for its application to biosensors
    corecore