173 research outputs found
The NTSC VLBI System and its application in UT1 measurement
In order to measure the Universal Time (UT1) in real time, National Time
Service Center (NTSC) has built a VGOS-like (VLBI Global Observing System)
broadband VLBI network, which includes three 13-m radio telescopes located in
Jilin, Sanya and Kashi, and a data analysis center in Xi'an. Each station is
equipped with a highly stable hydrogen atomic clock and a self-developed VLBI
backend, and is co-located with two GPS receivers. This VGOS-like VLBI network
may play an important role in improving the Chinese broadband VLBI technology
and making valuable contributions to domestic VLBI measurements of UT1. In this
paper, we introduce the specifications of this VLBI network, and present the
UT1 measurements at C-band conducted in 2018 using the Jilin-Kashi baseline of
this network. The comparisons between our UT1 estimates and those provided by
IERS suggest that the NTSC VLBI network is capable to determine UT1 accurate at
the level of 58.8 microseconds
Jin Fu Kang Oral Liquid Inhibits Lymphatic Endothelial Cells Formation and Migration
Lung cancer is the leading cause of cancer-related deaths worldwide. Jin Fu Kang (JFK), an oral liquid prescription of Chinese herbal drugs, has been clinically available for the treatment of non-small cell lung cancer (NSCLC). Lymphangiogenesis is a primary event in the process of cancer development and metastasis, and the formation and migration of lymphatic endothelial cells (LECs) play a key role in the lymphangiogenesis. To assess the activity of stromal cell-derived factor-1 (SDF-1) and the coeffect of SDF-1 and vascular endothelial growth factor-C (VEGF-C) on the formation and migration of LECs and clarify the inhibitory effects of JFK on the LECs, the LECs were differentiated from CD34+/VEGFR-3+ endothelial progenitor cells (EPCs), and JFK-containing serums were prepared from rats. SDF-1 and VEGF-C both induced the differentiation of CD34+/VEGFR-3+ EPCs towards LECs and enhanced the LECs migration. Couse of SDF-1 and VEGF-C displayed an additive effect on the LECs formation but not on their migration. JFK inhibited the formation and migration of LECs, and the inhibitory effects were most probably via regulation of the SDF-1/CXCR4 and VEGF-C/VEGFR-3 axes. The current finding suggested that JFK might inhibit NSCLC through antilymphangiogenesis and also provided a potential to discover antilymphangiogenesis agents from natural resources
MicroRNA-323a-3p Promotes Pressure Overload-Induced Cardiac Fibrosis by Targeting TIMP3
Background/Aims: Cardiac fibrosis is a major cause of diverse cardiovascular diseases. MicroRNAs have recently been proven a novel class of regulators of cardiac fibrosis. In this study, we sought to investigate the role of miR-323a-3p and its mechanisms in regulating cardiac fibrosis. Methods: The transverse aortic constriction (TAC) mice model was induced and neonatal cardiac fibroblasts (CFs) were cultured. MTT (3- [4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) assay was used to detect the cell viability. Echocardiography was used to evaluate cardiac function. Masson’s Trichrome stain was used to evaluate the development of fibrosis. Luciferase activity assay was performed to confirm the miRNA’s binding site. Real-time PCR and Western blot were used to evaluate the level of mRNA and protein. Results: MiR-323a-3p was found up-regulated in myocardial tissues subjected to TAC and in CFs cultured with Angiotensin â…¡ (Ang â…¡). Overexpression of miR-323a-3p significantly increased the mRNA levels of collagen â… , collagen â…¢, MMP2 and MMP9, while inhibition of miR-323a-3p prevented the proliferation, collagen production and the protein level of transforming growth factor (TGF-β) in rat neonatal CFs. Strikingly, injection of antagomiR-323a-3p elevated cardiac function and inhibited the expression of TGF-β in the TAC mice. TIMP3 was a direct target of miR-323a-3p, as the overexpression of miR-323a-3p decreased the protein and mRNA levels of TIMP3. In the CFs with pre-treatment of Ang â…¡, siRNA-TIMP abolished the effects of AMO-323a-3p on the inhibition of the proliferation of CFs, the down-regulation of collagen â… and collagen â…¢, and the expression of TGF-β. Conclusion: Our findings provide evidence that miR-323a-3p promotes cardiac fibrosis via miR-323a-3p-TIMP3-TGF-β pathway. miR-323a-3p may be a new marker for cardiac fibrosis progression and that inhibition of miR-323a-3p may be a promising therapeutic target for the treatment of cardiac fibrosis
Simple non-invasive scoring systems and histological scores in predicting mortality in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis
[Background and Aim] There is debate among the hepatology community regarding the simple non-invasive scoring systems and histological scores (even it was developed for histological classification) in predicting clinical outcomes in patients with non-alcoholic fatty liver disease (NAFLD). This study aimed to determine whether the presence of simple non-invasive scoring systems and histological scores could predict all-cause mortality, liver-related mortality, and liver disease decompensation (liver failure, cirrhosis, hepatocellular carcinoma, or decompensated liver disease).[Methods] The pooled hazard ratio of prognostic factors and incidence rate per 1000 person-years in patients with NAFLD was calculated and further adjusted by two different models of handling the duplicated data.[Results] A total of 19 longitudinal studies were included. Most simple non-invasive scoring systems (Fibrosis-4 Score, BARD, and aspartate aminotransferase-to-platelet ratio index ) and histological scores (NAFLD activity score, Brunt, and "steatosis, activity, and fibrosis" ) failed in predicting mortality, and only the NAFLD fibrosis score > 0.676 showed prognostic ability to all-cause mortality (four studies, 7564 patients, 118 352 person-years followed up, pooled hazard ratio 1.44, 95% confidence interval [CI] 1.05–1.96). The incidence rate per 1000 person-years of all-cause mortality, liver-related mortality, cardiovascular-related mortality, and liver disease decompensation resulted in a pooled incidence rate per 1000 person-years of 22.65 (14 studies, 95% CI 9.62–53.31), 3.19 (7 studies, 95% CI 1.14–8.93), 6.02 (6 studies, 95% CI 4.69–7.74), and 11.46 (4 studies, 95% CI 5.33–24.63), respectively.[Conclusion] Non-alcoholic fatty liver disease fibrosis score showed promising prognostic value to all-cause mortality. Most present simple non-invasive scoring systems and histological scores failed to predict clinical outcomes.Peer reviewe
Comparison of Double Kissing Crush Versus Culotte Stenting for Unprotected Distal Left Main Bifurcation Lesions Results From a Multicenter, Randomized, Prospective DKCRUSH-III Study
ObjectivesThe study aimed to investigate the difference in major adverse cardiac event (MACE) at 1-year after double kissing (DK) crush versus Culotte stenting for unprotected left main coronary artery (UPLMCA) distal bifurcation lesions.BackgroundDK crush and Culotte stenting were reported to be effective for treatment of coronary bifurcation lesions. However, their comparative performance in UPLMCA bifurcation lesions is not known.MethodsA total of 419 patients with UPLMCA bifurcation lesions were randomly assigned to DK (n = 210) or Culotte (n = 209) treatment. The primary endpoint was the occurrence of a MACE at 1 year, including cardiac death, myocardial infarction, and target vessel revascularization (TVR). In-stent restenosis (ISR) at 8 months was secondary endpoint, and stent thrombosis (ST) served as a safety endpoint. Patients were stratified by SYNTAX (Synergy between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery) and NERS (New Risk Stratification) scores.ResultsPatients in the Culotte group had significant higher 1-year MACE rate (16.3%), mainly driven by increased TVR (11.0%), compared with the DK group (6.2% and 4.3%, respectively; all p < 0.05). ISR rate in side branch was 12.6% in the Culotte group and 6.8% in the DK group (p = 0.037). Definite ST rate was 1.0% in the Culotte group and 0% in the DK group (p = 0.248). Among patients with bifurcation angle ≥70°, NERS score ≥20, and SYNTAX score ≥23, the 1-year MACE rate in the DK group (3.8%, 9.2%, and 7.1%, respectively) was significantly different to those in the Culotte group(16.5%, 20.4%, and 18.9%, respectively; all p < 0.05).ConclusionsCulotte stenting for UPLMCA bifurcation lesions was associated with significantly increased MACEs, mainly due to the increased TVR. (Double Kissing [DK] Crush Versus Culotte Stenting for the Treatment of Unprotected Distal Left Main Bifurcation Lesions: DKCRUSH-III, a Multicenter Randomized Study Comparing Double-Stent Techniques; ChiCTR-TRC-00000151
Local axisymmetry-breaking–induced transition of trapped-particle orbit and loss channels in quasi-axisymmetric stellarators
The transition of trapped-particle orbit topologies has been investigated in quasi-axisymmetric (QA) configurations, such as the Chinese First Quasi-axisymmetric Stellarator (CFQS). It is found that the axisymmetry-breaking phenomenon in QA configurations is of great significance at some specific locations, which could easily induce blocked particles to transit into localized particles. A novel aspect is presented to interpret the transition mechanism of trapped-particle orbit topologies in this paper, i.e., as the amplitudes of non-axisymmetric field increase along the radius direction, the region of large toroidal inhomogeneity is gradually generated, which makes the length of the trapped-particle trajectory substantially short, and hence, may restrict particles to a single helical field period. Meanwhile, at such locations the "pseudo-axisymmetric" field results in coupling of the maximum radial drift and the minimum poloidal drift, which enables the transition of trapped-particle orbit topologies considerably and forms specific loss channels, degrading plasma confinement. These results may shed light on the optimization of QA configurations via avoidance of such coupling with respect to energetic particle confinement. Moreover, this work is also relevant to the generation of inhomogeneity of particle flux deposition on the devertor plates
Production of cyanophycin in Rhizopus oryzae through the expression of a cyanophycin synthetase encoding gene
Cyanophycin or cyanophycin granule peptide is a protein that results from non-ribosomal protein synthesis in microorganisms such as cyanobacteria. The amino acids in cyanophycin can be used as a feedstock in the production of a wide range of chemicals such as acrylonitrile, polyacrylic acid, 1,4-butanediamine, and urea. In this study, an auxotrophic mutant (Rhizopus oryzae M16) of the filamentous fungus R. oryzae 99-880 was selected to express cyanophycin synthetase encoding genes. These genes originated from Synechocystis sp. strain PCC6803, Anabaena sp. strain PCC7120, and a codon optimized version of latter gene. The genes were under control of the pyruvate decarboxylase promoter and terminator elements of R. oryzae. Transformants were generated by the biolistic transformation method. In only two transformants both expressing the cyanophycin synthetase encoding gene from Synechocystis sp. strain PCC6803 was a specific enzyme activity detected of 1.5Â mU/mg protein. In one of these transformants was both water-soluble and insoluble cyanophycin detected. The water-soluble fraction formed the major fraction and accounted for 0.5% of the dry weight. The water-insoluble CGP was produced in trace amounts. The amino acid composition of the water-soluble form was determined and constitutes of equimolar amounts of arginine and aspartic acid
Global gene expression profile progression in Gaucher disease mouse models
<p>Abstract</p> <p>Background</p> <p>Gaucher disease is caused by defective glucocerebrosidase activity and the consequent accumulation of glucosylceramide. The pathogenic pathways resulting from lipid laden macrophages (Gaucher cells) in visceral organs and their abnormal functions are obscure.</p> <p>Results</p> <p>To elucidate this pathogenic pathway, developmental global gene expression analyses were conducted in distinct <it>Gba1 </it>point-mutated mice (V394L/V394L and D409 V/null). About 0.9 to 3% of genes had altered expression patterns (≥ ± 1.8 fold change), representing several categories, but particularly macrophage activation and immune response genes. Time course analyses (12 to 28 wk) of INFγ-regulated pro-inflammatory (13) and IL-4-regulated anti-inflammatory (11) cytokine/mediator networks showed tissue differential profiles in the lung and liver of the <it>Gba1 </it>mutant mice, implying that the lipid-storage macrophages were not functionally inert. The time course alterations of the INFγ and IL-4 pathways were similar, but varied in degree in these tissues and with the <it>Gba1 </it>mutation.</p> <p>Conclusions</p> <p>Biochemical and pathological analyses demonstrated direct relationships between the degree of tissue glucosylceramides and the gene expression profile alterations. These analyses implicate IFNγ-regulated pro-inflammatory and IL-4-regulated anti-inflammatory networks in differential disease progression with implications for understanding the Gaucher disease course and pathophysiology.</p
- …