9 research outputs found

    Hyperphenylalaninemia reduces creatine kinase activity in the cerebral cortex of rats

    No full text
    Phenylketonuria (PKU) is a metabolic disorder accumulating phenylalanine (Phe) and its metabolites in plasma and tissues of the patients. Considering that phenylalanine is the main neurotoxic metabolite, and brain energy homeostasis seems to be affected in phenylketonuria, our main objective was to investigate the effect of acute and chronic hyperphenylalaninemia (HPA) on creatine kinase (CK) activity in brain cortex of Wistar rats. Hyperphenylalaninemia was induced by subcutaneous administration of 5.2 μmol phenylalanine + 2.4 μmol α-methylphenylalanine (phenylalanine hydroxylase (PAH) inhibitor)/g of body weight. We also investigated the in vitro effect of phenylalanine and/or α-methylphenylalanine on creatine kinase activity in the brain cortex of non-treated rats. The results showed that phenylalanine significantly inhibited creatine kinase activity in vitro and reduced the enzyme activity in vivo. Considering the importance of creatine kinase for the maintenance of energy homeostasis in brain, if this enzyme inhibition also occurs in phenylketonuric patients, it is possible that creatine kinase inhibition may be one of the mechanisms by which phenylalanine is neurotoxic in phenylketonuria

    In vivo and in vitro effect of imipramine and fluoxetine on Na+,K+-ATPase activity in synaptic plasma membranes from the cerebral cortex of rats

    No full text
    The effects of in vivo chronic treatment and in vitro addition of imipramine, a tricyclic antidepressant, or fluoxetine, a selective serotonin reuptake inhibitor, on the cortical membrane-bound Na+,K+-ATPase activity were studied. Adult Wistar rats received daily intraperitoneal injections of 10 mg/kg of imipramine or fluoxetine for 14 days. Twelve hours after the last injection rats were decapitated and synaptic plasma membranes (SPM) from cerebral cortex were prepared to determine Na+,K+-ATPase activity. There was a significant decrease (10%) in enzyme activity after imipramine but fluoxetine treatment caused a significant increase (27%) in Na+,K+-ATPase activity compared to control (P<0.05, ANOVA; N = 7 for each group). When assayed in vitro, the addition of both drugs to SPM of naive rats caused a dose-dependent decrease in enzyme activity, with the maximal inhibition (60-80%) occurring at 0.5 mM. We suggest that a) imipramine might decrease Na+,K+-ATPase activity by altering membrane fluidity, as previously proposed, and b) stimulation of this enzyme might contribute to the therapeutic efficacy of fluoxetine, since brain Na+,K+-ATPase activity is decreased in bipolar patients

    Kinetic studies on the inhibition of creatine kinase activity by branched‐chain α‐amino acids in the brain cortex of rats

    No full text
    Maple syrup urine disease (MSUD) is a metabolic disorder biochemically characterized by the accumulation of branched-chain α-amino acids (BCAA) and their branched-chain α-keto acids (BCKA) in blood and tissues. Neurological dysfunction is usually present in the patients, but the mechanisms of brain damage in this disease are far from be understood. The main objective of this study was to investigate the mechanisms by which BCAA inhibit creatine kinase activity, a key enzyme of energy homeostasis, in the brain cortex of 21-day-old Wistar rats. For the kinetic studies, Lineweaver–Burk and a modification of the Chevillard et al. plots were used to characterize the mechanisms of enzyme inhibition. The results indicated that BCAA inhibit creatine kinase by competition with the substrates phosphocreatine and ADP at the active site. Considering the crucial role creatine kinase plays in energy homeostasis in brain, if these effects also occur in the brain of MSUD patients, it is possible that inhibition of this enzyme activity may contribute to the brain damage found in this disease. In this case, it is possible that creatine supplementation to the diet might benefit MSUD patients

    In vitro galactose impairs energy metabolism in the brain of young rats: protective role of antioxidants

    No full text
    We, herein, investigated the in vitro effects of galactose on the activity of pyruvate kinase, succinate dehydrogenase (SDH), complex II and IV (cytochrome c oxidase) of the respiratory chain and Na(+)K+-ATPase in the cerebral cortex, cerebellum and hippocampus of 30-day-old rats. We also determined the influence of the antioxidants, trolox, ascorbic acid and glutathione, on the effects elicited by galactose. Galactose was added to the assay at concentrations of 0.1, 3.0, 5.0 and 10.0 mM. Control experiments were performed without galactose. Galactose, at 3.0, 5.0 and 10.0 mM, decreased pyruvate kinase activity in the cerebral cortex and at 10.0 mM in the hippocampus. Galactose, at 10.0 mM, reduced SDH and complex II activities in the cerebellum and hippocampus, and reduced cytochrome c oxidase activity in the hippocampus. Additionally, decreased Na(+)K(+)-ATPase activity in the cerebral cortex and hippocampus; conversely, galactose, at 3.0 and 5.0 mM, increased this enzyme's activity in the cerebellum. Data show that galactose disrupts energy metabolism and trolox, ascorbic acid and glutathione addition prevented the majority of alterations in the parameters analyzed, suggesting the use of antioxidants as an adjuvant therapy in Classic galactosemia

    Inhibition of in vitro CO2 production and lipid synthesis by 2-hydroxybutyric acid in rat brain

    No full text
    2-Hydroxybutyric acid appears at high concentrations in situations related to deficient energy metabolism (e.g., birth asphyxia) and also in inherited metabolic diseases affecting the central nervous system during neonatal development, such as "cerebral" lactic acidosis, glutaric aciduria type II, dihydrolipoyl dehydrogenase (E3) deficiency, and propionic acidemia. The present study was carried out to determine the effect of 2-hydroxybutyric acid at various concentrations (1-10 mM) on CO2 production and lipid synthesis from labeled substrates in cerebral cortex of 30-day-old Wistar rats in vitro. CO2 production was significantly inhibited (30-70%) by 2-hydroxybutyric acid in cerebral cortex prisms, in total homogenates and in the mitochondrial fraction. We also demonstrated a significant inhibition of lipid synthesis (20-45%) in cerebral cortex prisms and total homogenates in the presence of 2-hydroxybutyric acid. However, no inhibition of lipid synthesis occurred in homogenates free of nuclei and mitochondria. The results indicate an impairment of mitochondrial energy metabolism caused by 2-hydroxybutyric acid, a fact that may secondarily lead to reduction of lipid synthesis. It is possible that these findings may be associated with the neuropathophysiology of the situations where 2-hydroxybutyric acid is accumulated
    corecore