12 research outputs found

    Zinc oxide for electronic, photovoltaic and optoelectronic applications

    No full text
    We demonstrate that the atomic layer deposition (ALD) technique has large potential to be widely used in a production of ZnO films for applications in electronic, photovoltaic (PV) and optoelectronic devices. Low growth temperature makes the ALD-grown ZnO films suitable for construction of various semiconductor/organic material hybrid structures. This opens possibilities of construction of novel devices based on very cheap organic materials. This includes organic light emitting diodes and PV cells of the third generation, as discussed in the present work

    Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS)

    No full text
    Item does not contain fulltextTranscranial alternating current stimulation (tACS), a non-invasive and well-tolerated form of electric brain stimulation, can influence perception, memory, as well as motor and cognitive function. While the exact underlying neurophysiological mechanisms are unknown, the effects of tACS are mainly attributed to frequency-specific entrainment of endogenous brain oscillations in brain areas close to the stimulation electrodes, and modulation of spike timing dependent plasticity reflected in gamma band oscillatory responses. tACS-related electromagnetic stimulator artifacts, however, impede investigation of these neurophysiological mechanisms. Here we introduce a novel approach combining amplitude-modulated tACS during whole-head magnetoencephalography (MEG) allowing for artifact-free source reconstruction and precise mapping of entrained brain oscillations underneath the stimulator electrodes. Using this approach, we show that reliable reconstruction of neuromagnetic low- and high-frequency oscillations including high gamma band activity in stimulated cortical areas is feasible opening a new window to unveil the mechanisms underlying the effects of stimulation protocols that entrain brain oscillatory activity.10 p

    Synchrotron photoemission study of (Zn,Co)O films with uniform Co distribution

    No full text
    We present results of a resonant photoemission study of (Zn,Co)O films with Co content between 2% and 7%. The films were grown by Atomic Layer Deposition (ALD) at low temperature of 160 degrees C and show fully paramagnetic behavior. The Co ions are uniformly distributed in the ZnO matrix and are free of foreign phases and metal accumulations as indicated by TEM data. The electronic structure of (Zn,Co)O films was studied by Resonant Photoemission Spectroscopy across the Co3p-Co3d photoionization threshold. We have observed that the resonant enhancement of the photoemission intensity from the Co3d shell is not the same for samples with different cobalt content. We suggest that the Co3d contribution to the valence band depends on both Co and H content. (C) 2011 Elsevier Ltd. All rights reserved
    corecore