610 research outputs found

    Inheritance of Temporal Logic Properties

    Full text link
    Abstract. Inheritance is one of the key features for the success of object-oriented languages. Inheritance (or specialisation) supports incremental design and re-use of already written specifications or programs. In a for-mal approach to system design the interest does not only lie in re-use of class definitions but also in re-use of correctness proofs. If a provably correct class is specialised we like to know those correctness properties which are preserved in the subclass. This can avoid re-verification of already proven properties and may thus substantially reduce the verifi-cation effort. In this paper we study the question of inheritance of correctness prop-erties in the context of state-based formalisms, using a temporal logic (CTL) to formalise requirements on classes. Given a superclass and its specialised subclass we develop a technique for computing the set of for-mulas which are preserved in the subclass. For specialisation we allow addition of attributes, modification of existing as well as extension with new methods.

    Hadronic final states in deep-inelastic scattering with Sherpa

    Full text link
    We extend the multi-purpose Monte-Carlo event generator Sherpa to include processes in deeply inelastic lepton-nucleon scattering. Hadronic final states in this kinematical setting are characterised by the presence of multiple kinematical scales, which were up to now accounted for only by specific resummations in individual kinematical regions. Using an extension of the recently introduced method for merging truncated parton showers with higher-order tree-level matrix elements, it is possible to obtain predictions which are reliable in all kinematical limits. Different hadronic final states, defined by jets or individual hadrons, in deep-inelastic scattering are analysed and the corresponding results are compared to HERA data. The various sources of theoretical uncertainties of the approach are discussed and quantified. The extension to deeply inelastic processes provides the opportunity to validate the merging of matrix elements and parton showers in multi-scale kinematics inaccessible in other collider environments. It also allows to use HERA data on hadronic final states in the tuning of hadronisation models.Comment: 32 pages, 22 figure

    Origin and Evolution of Saturn's Ring System

    Full text link
    The origin and long-term evolution of Saturn's rings is still an unsolved problem in modern planetary science. In this chapter we review the current state of our knowledge on this long-standing question for the main rings (A, Cassini Division, B, C), the F Ring, and the diffuse rings (E and G). During the Voyager era, models of evolutionary processes affecting the rings on long time scales (erosion, viscous spreading, accretion, ballistic transport, etc.) had suggested that Saturn's rings are not older than 100 My. In addition, Saturn's large system of diffuse rings has been thought to be the result of material loss from one or more of Saturn's satellites. In the Cassini era, high spatial and spectral resolution data have allowed progress to be made on some of these questions. Discoveries such as the ''propellers'' in the A ring, the shape of ring-embedded moonlets, the clumps in the F Ring, and Enceladus' plume provide new constraints on evolutionary processes in Saturn's rings. At the same time, advances in numerical simulations over the last 20 years have opened the way to realistic models of the rings's fine scale structure, and progress in our understanding of the formation of the Solar System provides a better-defined historical context in which to understand ring formation. All these elements have important implications for the origin and long-term evolution of Saturn's rings. They strengthen the idea that Saturn's rings are very dynamical and rapidly evolving, while new arguments suggest that the rings could be older than previously believed, provided that they are regularly renewed. Key evolutionary processes, timescales and possible scenarios for the rings's origin are reviewed in the light of tComment: Chapter 17 of the book ''Saturn After Cassini-Huygens'' Saturn from Cassini-Huygens, Dougherty, M.K.; Esposito, L.W.; Krimigis, S.M. (Ed.) (2009) 537-57

    Local Ultrasound-Facilitated Thrombolysis in High-Risk Pulmonary Embolism: First Dutch Experience

    Get PDF
    Purpose To provide insight into the current use and results of ultrasound-facilitated catheter-directed thrombolysis (USAT) in patients with high-risk pulmonary embolism (PE). Introduction Systemic thrombolysis is an effective treatment for hemodynamically unstable, high-risk PE, but is associated with bleeding complications. USAT is thought to reduce bleeding and is therefore advocated in patients with high-risk PE and contraindications for systemic thrombolysis. Methods We conducted a retrospective cohort study of all patients who underwent USAT for high-risk PE in the Netherlands from 2010 to 2017. Characteristics and outcomes were analyzed. Primary outcomes were major (including intracranial and fatal) bleeding and all-cause mortality after 1 month. Secondary outcomes were allcause mortality and recurrent venous thromboembolism within 3 months. Results 33 patients underwent USAT for high-risk PE. Major bleeding occurred in 12 patients (36%, 95% CI 22–53), including 1 intracranial and 3 fatal bleeding. Allcause mortality after 1 month was 48% (16/33, 95% CI 31–66). All-cause mortality after 3 months was 50% (16/ 32, 95% CI 34–66), recurrent venous thromboembolism occurred in 1 patient (1/32, 3%, 95% CI 1–16). Conclusions This study was the first to describe characteristics and outcomes after USAT in a study population of patients with high-risk PE only, an understudied population. Although USAT is considered a relatively safe treatment option, our results illustrate that at least caution is needed in critically ill patients with high-risk PE. Further research in patients with high-risk PE is warranted to guide patient selection

    Forward pi^0 Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA

    Full text link
    Deep-inelastic positron-proton interactions at low values of Bjorken-x down to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons are studied with the H1 experiment at HERA. The inclusive cross section for pi^0 mesons produced at small angles with respect to the proton remnant (the forward region) is presented as a function of the transverse momentum and energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x. Measurements are also presented of the transverse energy flow in events containing a forward pi^0 meson. Hadronic final state calculations based on QCD models implementing different parton evolution schemes are confronted with the data.Comment: 27 pages, 8 figures and 3 table

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    Low Q^2 Jet Production at HERA and Virtual Photon Structure

    Get PDF
    The transition between photoproduction and deep-inelastic scattering is investigated in jet production at the HERA ep collider, using data collected by the H1 experiment. Measurements of the differential inclusive jet cross-sections dsigep/dEt* and dsigmep/deta*, where Et* and eta* are the transverse energy and the pseudorapidity of the jets in the virtual photon-proton centre of mass frame, are presented for 0 < Q2 < 49 GeV2 and 0.3 < y < 0.6. The interpretation of the results in terms of the structure of the virtual photon is discussed. The data are best described by QCD calculations which include a partonic structure of the virtual photon that evolves with Q2.Comment: 20 pages, 5 Figure
    corecore