85 research outputs found

    Artificial Neural Network-Based Flight Control Using Distributed Sensors on Fixed-Wing Unmanned Aerial Vehicles

    Get PDF
    Conventional control systems for autonomous aircraft use a small number of precise sensors in combination with classical control laws to maintain flight. The sensing systems encode center of mass motion and generally are set-up for flight regimes where rigid body assumptions and linear flight dynamics models are valid. Gain scheduling is used to overcome some of the limitations from these assumptions, taking advantage of well-tuned controllers over a range of design points. In contrast, flying animals achieve efficient and robust flight control by taking advantage of highly non-linear structural dynamics and aerodynamics. It has been suggested that the distributed arrays of flow and force sensors found in flying animals could be behind their remarkable flight control. Using a wind tunnel aircraft model instrumented with distributed arrays of load and flow sensors, we developed Artificial Neural Network flight control algorithms that use signals from the sensing array as well as the signals available in conventional sensing suites to control angle-of-attack. These controllers were trained to match the response from a conventional controller, achieving a level of performance similar to the conventional controller over a wide range of angle-of-attack and wind speed values. Wind tunnel testing showed that by using an ANN-based controller in combination with signals from a distributed array of pressure and strain sensors on a wing, it was possible to control angle-of-attack. The End-to-End learning approach used here was able to control angle-of-attack by directly learning the mapping between control inputs and system outputs without explicitly estimating or being given the angle-of-attack.</p

    Aerodynamic State and Loads Estimation Using Bio-Inspired Distributed Sensing

    Get PDF
    Flying animals exploit highly nonlinear dynamics to achieve efficient and robust flight control. It appears that the distributed flow and force sensor arrays found in flying animals are instrumental in enabling this performance. Using a wind-tunnel wing model instrumented with distributed arrays of strain and pressure sensors, we characterized the relationship between the distributed sensor signals and aerodynamic and load-related variables. Estimation approaches based on nonlinear artificial neural networks (ANNs) and linear partial least squares were tested with different combinations of sensor signals. The ANN estimators were accurate and robust, giving good estimates for all variables, even in the stall region when the distributed array pressure and strain signals became unsteady. The linear estimator performed well for load estimates but was less accurate for aerodynamic variables such as angle of attack and airspeed. Future applications based on distributed sensing could include enhanced flight control systems that directly use measurements of aerodynamic states and loads, allowing for increase maneuverability and improved control of unmanned aerial vehicles with high degrees of freedom such as highly flexible or morphing wings.</p

    Bird velocity optimization as inspiration for unmanned aerial vehicles in urban environments

    Get PDF

    Avian surface reconstruction in free-flight with application to flight stability analysis of a barn owl and peregrine falcon

    Get PDF
    Birds primarily create and control the forces necessary for flight through changing the shape and orientation of their wings and tail. Their wing geometry is characterised by complex variation in parameters such as camber, twist, sweep and dihedral. To characterise this complexity, a multi-stereo photogrammetry setup was developed for accurately measuring surface geometry in high-resolution during free-flight. The natural patterning of the birds was used as the basis for phase correlation-based image matching, allowing indoor or outdoor use while being non-intrusive for the birds. The accuracy of the method was quantified and shown to be sufficient for characterising the geometric parameters of interest, but with a reduction in accuracy close to the wing edge and in some localized regions. To demonstrate the method's utility, surface reconstructions are presented for a barn owl (Tyto alba) and peregrine falcon (Falco peregrinus) during three instants of gliding flight per bird. The barn owl flew with a consistent geometry, with positive wing camber and longitudinal anhedral. Based on flight dynamics theory this suggests it was longitudinally statically unstable during these flights. The peregrine flew with a consistent glide angle, but at a range of airspeeds with varying geometry. Unlike the barn owl, its glide configuration did not provide a clear indication of longitudinal static stability/instability. Aspects of the geometries adopted by both birds appeared to be related to control corrections and this method would be well suited for future investigations in this area, as well as for other quantitative studies into avian flight dynamics.Flight O1 - original uncompressed tif images for flight O1 of the barn owlO1_images.zipFlight O2 - original uncompressed tif images for flight O2 of the barn owlO2_images.zipFlight O3 - original uncompressed tif images for flight O3 of the barn owlO3_images.zipFlight P1 - original uncompressed tif images for flight P1 of the peregrineP1_images.zipFlight P2 - original uncompressed tif images for flight P2 of the peregrineP2_images.zipFlight P3 - original uncompressed tif images for flight P3 of the peregrineP3_images.zipREADM

    Reinforcement Learning to Control Lift Coefficient Using Distributed Sensors on a Wind Tunnel Model

    Get PDF
    Arrays of sensors distributed on the wing of fixed-wing vehicles can provide information not directly available to conventional sensor suites. These arrays of sensors have the potential to improve flight control and overall flight performance of small fixed-wing uninhabited aerial vehicles (UAVs). This work investigated the feasibility of estimating and controlling aerodynamic coefficients using the experimental readings of distributed pressure and strain sensors across a wing. The study was performed on a one degree-of-freedom model about pitch of a fixed-wing platform instrumented with the distributed sensing system. A series of reinforcement learning (RL) agents were trained in simulation for lift coefficient control, then validated in wind tunnel experiments. The performance of RL-based controllers with different sets of inputs in the observation space were compared with each other and with that of a manually tuned PID controller. Results showed that hybrid RL agents that used both distributed sensing data and conventional sensors performed best across the different tests.</p

    Quantifying avian inertial properties using calibrated computed tomography

    Get PDF
    Estimating centre of mass and mass moments of inertia is an important aspect of many studies in biomechanics. Characterising these parameters accurately in three dimensions is challenging with traditional methods requiring dissection or suspension of cadavers. Here, we present a method to quantify the three-dimensional centre of mass and inertia tensor of birds of prey using calibrated computed tomography (CT) scans. The technique was validated using several independent methods, providing body segment mass estimates within approximately 1% of physical dissection measurements and moment of inertia measurements with a 0.993 R(2) correlation with conventional trifilar pendulum measurements. Calibrated CT offers a relatively straightforward, non-destructive approach that yields highly detailed mass distribution data that can be used for three-dimensional dynamics modelling in biomechanics. Although demonstrated here with birds, this approach should work equally well with any animal or appendage capable of being CT scanned

    Unmanned aerial vehicle control costs mirror bird behaviour when soaring close to buildings

    Get PDF
    Small unmanned aerial vehicles (SUAVs) are suitable for many low-altitude operations in urban environments due to their manoeuvrability; however, their flight performance is limited by their on-board energy storage and their ability to cope with high levels of turbulence. Birds exploit the atmospheric boundary layer in urban environments, reducing their energetic flight costs by using orographic lift generated by buildings. This behaviour could be mimicked by fixed-wing SUAVs to overcome their energy limitations if flight control can be maintained in the increased turbulence present in these conditions. Here, the control effort required and energetic benefits for a SUAV flying parallel to buildings whilst using orographic lift was investigated. A flight dynamics and control model was developed for a powered SUAV and used to simulate flight control performance in different turbulent wind conditions. It was found that the control effort required decreased with increasing altitude and that the mean throttle required increased with greater radial distance to the buildings. However, the simulations showed that flying close to the buildings in strong wind speeds increased the risk of collision. Overall, the results suggested that a strategy of flying directly over the front corner of the buildings appears to minimise the control effort required for a given level of orographic lift, a strategy that mirrors the behaviour of gulls in high wind speeds

    Head movements quadruple the range of speeds encoded by the insect motion vision system in hawkmoths

    Get PDF
    Flying insects use compensatory head movements to stabilize gaze. Like other optokinetic responses, these movements can reduce image displacement, motion, and misalignment, and simplify the optic flow field. Because gaze is imperfectly stabilized in insects, we hypothesised that compensatory head movements serve to extend the range of velocities of self-motion that the visual system encodes. We tested this by measuring head movements in hawkmoths Hyles lineata responding to full-field visual stimuli of differing oscillation amplitudes, oscillation frequencies, and spatial frequencies. We used frequency-domain system identification techniques to characterise the head's roll response, and simulated how this would have affected the output of the motion vision system, modelled as a computational array of Reichardt detectors. The moths' head movements were modulated to allow encoding of both fast and slow self-motion, effectively quadrupling the working range of the visual system for flight control. By using its own output to drive compensatory head movements, the motion vision system thereby works as an adaptive sensor, which will be especially beneficial in nocturnal species with inherently slow vision. Studies of the ecology of motion vision must therefore consider the tuning of motion-sensitive interneurons in the context of the closed-loop systems in which they function
    • …
    corecore