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Artificial Neural Network-Based Flight Control Using

Distributed Sensors on Fixed-Wing Unmanned Aerial Vehicles

Sergio A. Araujo-Estrada∗, and Shane P. Windsor†

Department of Aerospace Engineering, University of Bristol, UK

Conventional control systems for autonomous aircraft use a small number of precise sensors

in combination with classical control laws to maintain flight. The sensing systems encode center

of mass motion and generally are set-up for flight regimes where rigid body assumptions and

linear flight dynamics models are valid. Gain scheduling is used to overcome some of the

limitations from these assumptions, taking advantage of well-tuned controllers over a range of

design points. In contrast, flying animals achieve efficient and robust flight control by taking

advantage of highly non-linear structural dynamics and aerodynamics. It has been suggested

that the distributed arrays of flow and force sensors found in flying animals could be behind

their remarkable flight control.

Using a wind tunnel aircraft model instrumented with distributed arrays of load and flow

sensors, we developed Artificial Neural Network flight control algorithms that use signals from

the sensing array as well as the signals available in conventional sensing suites to control angle-

of-attack. These controllers were trained to match the response from a conventional controller,

achieving a level of performance similar to the conventional controller over a wide range of

angle-of-attack and wind speed values. Wind tunnel testing showed that by using an ANN-

based controller in combination with signals from a distributed array of pressure and strain

sensors on a wing, it was possible to control angle-of-attack. The End-to-End learning approach

used here was able to control angle-of-attack by directly learning the mapping between control

inputs and system outputs without explicitly estimating or being given the angle-of-attack.

Nomenclature
Roman Symbols

b Wing span, m

c Wing mean aerodynamic chord, m

CP Pressure coefficient

eα Angle of attack tracking error, °

q Wing model pitch rate, °/s

S Wing model reference surface, m2

trs rising time, s

V Wind speed, m/s

Greek Symbols

α Angle of attack, °

αd Angle of attack demand, °

δe Elevator deflection, °

ρ Air density, kg/m3

∗Research Associate, s.araujoestrada@bristol.ac.uk.
†Senior Lecturer in Aerodynamics.
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I. Introduction
Conventional flight control systems for autonomous aircraft traditionally utilize a small number of very precise

sensors which give the control system information about the motion of the aircraft’s center of mass. For instance,

inertial measurement units (IMUs) are used to measure linear acceleration and angular rates of rotation, while a pitot

tube is used to measure airspeed. This information is then normally used alongside sensors such as GPS to provide the

control system with measurements of the aircraft rigid body motion [1]. This conventional range of sensor input works

well when the assumptions of rigid body motion and linearized flight dynamics and aerodynamics apply, but may be

limiting when these assumptions are no longer valid; for example, with highly flexible airframes or at high angles of

attack. In these cases, the dynamics involved can become highly non-linear and conventional sensors suites may not

be sufficient to characterize the dynamic state of the aircraft.

Biological flyers such as birds, bats and insects all have highly flexible wings and bodies, where numerous joints

and aeroelastic deformation means that the shape of their wings and the related aerodynamic forces they produce

is constantly changing [2]. In addition, they fly in airflows where the magnitude of gusts can be the same order as

their airspeed, meaning that they can experience very large unpredictable changes in angle of attack [3]. Rather than

being limited by these departures from rigid body motion and liner aerodynamics it appears that biological flyers take

advantage of these. For instance, wing flexibility helps reduce the flight costs of locusts [4], flapping motion generates

additional lift through leading edge vortex generation in bats [5], and birds appear to use both spatial [6] and temporal

variation [7] in the wind to reduce their flight costs.

One aspect all biological flyers appear to have in common, and in contrast to aircraft, is that they have many

different sensors distributed on their bodies and aerodynamic surfaces, as well as having localized sensory organs such

as eyes, ears and inertial sensors. Insects have many flow sensitive hairs distributed about their bodies, as well as

strain sensitive campaniform sensile distributed throughout their wings [8]. Birds have thousands of mechanoreceptors

throughout their wings [9] which are thought to encode airflow information [10], while also having proprioceptive

muscle spindles which give them information about the positions of the different parts of their body and the forces

acting on these [11]. Similarly, bats have flow sensitive hairs distributed over their wings [12], as well as very similar

proprioceptive organs to birds. Overall, these types of distributed sensors provide animals with a rich suite of sensory

input about the spatial distribution of airflow and loading over their bodies and wings and it would appear that these

distributed sensory systems play an important role in their robust and efficient flight control.

The development of distributed airflow sensor systems is a growing research area. Distributed flow sensors have

been used in Flush Air Data Systems (FADS) in a number of high performance aircraft, such as the X-33 [13] and the

space shuttle [14], where traditional airdata booms were impractical. However, these distributed airflow sensors are

also increasingly being developed for small unmanned air vehicles (UAVs) where there is a need for more agile flight

control when flying in cluttered turbulent environments [15–17]. These systems have utilized a number of different

types of sensors such as diaphragm based pressure sensors [18], hot film sensors [19] and artificial hair sensors [20].

Studies of these systems in wind tunnel testing [21], as well as flight testing [22], have shown the potential of these

systems for measuring a range of aerodynamic parameters.

The use of distributed force or strain measurement for flight control is a less well investigated area than distributed

flow sensing. Initial work has shown the potential for this type of sensor information to improve flight control, with

the potential for faster responses [23] and the use of a physics based control approach [24]. Previous studies have

looked at the advantages of each system in isolation in separate aircraft [25], the potential advantages of utilizing both

distributed airflow and load information in combination with Artificial Neural Networks (ANN) to obtain estimates of

the aerodynamic variables and loads [21], as well as the use of pressure-based distributed control systems for flight

control [26] and gust alleviation [27].

There have been some efforts to apply machine learning for flight control purposes, for instance Supervised Learning

has been used to obtain an ANN capable of representing a family of linear flight controllers designed at various operating

points and validated in a simulation environment [28]. Another application example is the problem of helicopter flight

control, which has been addressed using techniques such as Apprenticeship Learning. Using Apprenticeship Learning,

an autonomous helicopter flight controller was inferred from example maneuvers from a human pilot, the resulting

controller was validated in flight tests and for some maneuvers it outperformed the human pilot [29]. However, overall

machine learning has not been applied extensively to flight control and there are significant opportunities to explore

how machine learning can be used in this field, with particular opportunities for the flight control of non-conventional

platforms or when using unconventional sensor modalities.

In this paper results of research investigating the potential application of bio-inspired distributed sensing in flight

control of small scale fixed wing UAVs are presented. This paper is organized as follows: Section II presents the
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experimental methods and platforms used for this research and their main characteristics. Section III presents results

from wind tunnel tests carried out to characterize the aircraft model for control law design purposes. Section IV

presents wind tunnel closed loop control results using a conventional controller and various distributed sensing-based

controllers. Section V discusses the information presented in this paper as well as areas of potential application for

flight control using distributed sensing. Section VI summarizes the information presented in this paper.

II. Experimental Platform Description

A. Aircraft Wind Tunnel Model
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Figure 1 Experimental platform: (a) chord-wise pressure array distribution, (b) span-wise strain array distri-

bution and (c) data acquisition system block diagram.

A wind tunnel model with a distributed array sensors was designed and integrated. The model was constructed

using the starboard side of a radio control aircraft model (WOT4 Foam-E Mk2+, Ripmax, Enfield, England). The

wing was of rectangular shape, with a wingspan b = 1.205 m and a chord c = 0.25 m. Only half of the wing was

used for the model, i.e. the wind tunnel model wingspan was 0.602 m. A total of 30 pressure sensors were connected

to pressure ports distributed along the wing chord at two different locations along the span using 3D-printed inserts.

The chord-wise location of the pressure ports is shown in Figure 1a, while the span-wise location of the 3-D inserts

is shown in Figure 1b. This arrangement provided information on the chord-wise pressure distribution of the wing

at two locations along the span. An array of 16 strain gauges was installed on the wing spar, an aluminum beam

located at the quarter chord of the wing. The strain gauges were divided into four sub-arrays, with each sub-array

able to measure vertical bending and torsional moments. Figure 1b shows the span-wise location of each strain gauge

sub-array. The sensor technical specifications are given in Table 1. Higher range pressure sensors were used in parallel

with lower range sensors for some ports where there was potential for the sensors to saturate, with the signals fused in
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the data processing stage. The experimental platform was originally designed as a wing-only model. It was used to

characterize the airflow and load signals from the distributed array and the signals were then used to obtain estimates

of the aerodynamic variables and loads in a low turbulence wind tunnel [21]. The platform was modified to be used

in a larger 2.13 m × 1.52 m (7 ft × 5 ft) wind tunnel, which allowed a larger α range (at least ±20°). The wind tunnel

model was fitted with three servo motors to drive its motion: one to drive the elevator, one to drive the flap and one to

drive the aileron.

Table 1 Wing model experimental platform sensor technical specifications.

Feature
Sensors

Static pressure Static pressure Vertical bending Torsion

Model SDP36 MPXV7002
SGD-2/350-

DY13

SGD-2/350-

RY53

Manufacturer Sensirion
Freescale

Semiconductor

Omega

Engineering

Omega

Engineering

Measurement

range
±500 Pa ±2 kPa ±30 000 µm/m ±30 000 µm/m

B. 1-DOF Pitch Rig

The wind tunnel model was mounted on a 1 Degree-Of-Freedom (DOF) pitch motion wind tunnel rig, depicted

in Figure 2. A custom built pitch mechanism provided the rig with two motion configurations: one with the model

free-to-pitch, where the aircraft was free to pitch; and a forced-pitch configuration, where the motion was driven by a

servo motor (LXM32MD30M2, Schneider Electric, Rueil-Malmaison, France). The aerodynamic loads were measured

using a load cell (Mini 45, ATI, Apex, North Carolina, USA) mounted at the interface between the wing support and

the free-to-pitch mechanism. Note that in the free-to-pitch configuration pitching moment measurements were not

available. α was obtained via the autopilot IMU (see Figure 1c). In the forced-pitch configuration, a magnetic rotary

encoder (RMB20SC, Renishaw, Wotton-under-Edge, Gloucestershire, England), provided additional α measurements.

The rotary encoder was connected to a timing pulley-belt array, this array was connected to the rig’s shaft which was

used to transmit the model’s motion. The rig’s shaft was connected to the servo motor through a elastomer insert

coupling (EKH-60-B-24-28, R+W, Klingenberg, Germany).

Flow direction

α

Side View

Instrumented
Wing

Pivot
Point

Servo-Actuated
Elevator

2.13 m [7.0 ft]

1
.5

2
m

[5
.0
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Figure 2 Experimental platform block diagram.
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Figure 3 Response to δe inputs: (a) α response to slow-ramp, (b) α response to frequency sweep, (c) CPB01

response to slow-ramp and (d) CPB01
response to frequency sweep.

C. Data Acquisition System and Control Action Computation

A custom data acquisition (DAQ) system, including some proprietary hardware, was used to collect pressure, strain,

aerodynamic loads and aerodynamic variables data. Figure 1c shows a block diagram of the DAQ system. The DAQ

system was divided into five Micro-Controller Unit (MCU) based subsystems: the Section A subsystem acquired the

signals from the pressure sensors in Section A insert and the SG-A and SG-B strain gauge arrays, it also received and

stored data from the rig control electronics and controled the inboard servo motor; the Section B subsystem acquired

the signals from the pressure sensors in Section B insert and the SG-B and SG-C strain gauge arrays and controlled

the outboard servo motor; the central MCU subsystem received time stamped data acquired by Section A and Section

B subsystems and transmitted these to a PC via USB communication. Additionally, the central MCU subsystem

controlled the model’s elevator. This subsystem could also be used to transmit commands generated by the PC to

the other subsystems. The load cell subsystem measured, acquired, conditioned and transmitted load signals to a PC

via USB using a multi-function I/O device (USB-6218, NI, Austin, Texas, USA); Lastly the PC collected and stored

pressure, strain, aerodynamic loads and aerodynamic variables data, and then used these to compute an appropriate

control action.

All acquired data was sampled at 200 Hz by the appropriate subsystem and received by the PC. It was then routed

using User Datagram Protocol (UDP) messages and stored on disk by a custom graphical user interface (GUI) written

in Python. A Simple Network Time Protocol (SNTP) was used to synchronize the clock signal of the MCU subsystems

with the PC clock signal. The SNTP implementation achieves a maximum time offset of less than 1.0 ms between

clock signals. The closed loop control action was computed using MATLAB Version 9.2 and Simulink Version 8.9,

Release 2017a (The MathWorks, Inc., Natick, Massachusetts, United States), Results from a series of characterization

experiments for flight control design are presented in the next section.

III. System Characterization and Flight Control Design
Using the wind tunnel model and testing rig described in Section II, a series of characterization experiments were

carried out in the University of Bristol 2.13 m × 1.52 m (7 ft × 5 ft) low speed wind tunnel. These experiments were
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Figure 4 General α controller structure: (a) conventional gain scheduling and (b) ANN-based.

carried out to characterize the response of dynamic state, aerodynamic loads, pressure and strain signals to δe commands.

These tests consisted of quasi-static as well as dynamic tests performed at air speeds V = [8, 10, 12, 14, 16, 18, 20]m/s.

For the quasi-static tests, slow δe ramps were used to drive α sweeps. The dynamic tests where carried out using δe
frequency sweeps ranging from 0.1 Hz to 10.0 Hz.

Figures 3a and 3c show α and the response of one pressure sensor CPB01
to δe slow-ramp inputs at various V ,

respectively. Both α and CPB01
exhibit a nonlinear response in the form of hysteretic behavior as function of the pitch

motion direction. This behavior is likely to be an aero-servo elastic phenomenon, arising from the interaction between

the servo and the elevator linkage as well as the flow interaction between the wing and the horizontal tail. This is

likely translate in significant time lag in closed loop response to commanded motions. Another important feature is the

observed reduction in δe control effectiveness for V < 12 m/s, i.e. higher control gains are required as V decreases.

Figures 3b and 3d show α and CPB01
response to δe frequency sweep inputs at various V , respectively. Both α and

CPB01
exhibit similar magnitude response and practically the same phase response. As observed for the δe slow-ramp

input case, both α and CPB01
display magnitude dependence on V , with the magnitude increasing as V increased. Based

on this experiment the aircraft open loop cut-off frequency was found to be ≈ 1.2 Hz and its input-output time delay

≈ 0.34 s.

The results from the characterization experiments were used to design a conventional Gain Scheduling (GS) α

controller. Figure 4a shows the structure of the conventional GS α controller. To form the GS controller, a series

of linear controllers providing closed-loop stability around various equilibrium points were tuned, i.e. values for the

feed-forward gain KFF , the proportional gain KP and the damping term Kq were obtained for various V and αd . The

resulting set of gains were collected to form a lookup table, which in turn was used to produce and interpolate the

controller gains. The GS controller takes eα, q as well as αd as inputs and returns δe command, with the angle of

attack tracking error defined as:

eα = αd − α. (1)
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Figure 5 shows the V and α points where the GS controller was tuned. Once the controller was tuned, a data set

comprised of 10 step commands was collected at each point for training and testing of the ANN-based controller, with

the distributed array signals recorded during these closed-loop control experiments.

Figure 4b shows the basic structure of the distributed sensing-based α controller. The controller is based on an

ANN in which αd , q, V as well as the signals from the distributed sensing array are fed and the control action δe is

returned. Note that in this implementation α is not fed into the controller directly. A total of five different controllers

were trained using this architecture. The basic input to each of the controllers is formed by αd , q and V , then based

on the amount and type of additional input information, each controller was defined as: Feed-Forward (FF), which

only used the basic input; Pressure (P), using the basic input and all the pressure information; Vertical Strain (VS),

using the basic input and the vertical strain information; Pressure and Vertical Strain (PVS), using the basic input, all

the pressure and the vertical strain information; and lastly, Pressure and All Strain (PAS), using the basic input, all the

pressure and the all strain information.

All the trained ANNs consisted of three main layers: the input, hidden and output layers. The input layer handled

the inputs to the ANN, it conditioned the input signals to improve the likelihood of successfully training an ANN

by scaling them using the mean value and range of the expected inputs. The number of neurons in the input layer

depended on the number of inputs for each controller class, with 3 for FF, 33 for P, 7 for VS, 37 for PVS and 40 for

PAS. The hidden layer consisted of interconnected artificial neurons. The neurons in the hidden layers used hyperbolic

tangent sigmoid functions as activation functions. A total of 9 neurons were used in the hidden layer for each controller.

Lastly, the output layer took the signals produced by the hidden layer and scaled it to match the magnitude of the target

function. The Mean-Square-Error between the δe output from the GS controller and the δe output from the ANN-based

controller was used as the target function to be minimized. The ANNs were trained using MATLAB Version 9.2 and

Neural Network Toolbox Version 10.0, Release 2017a (The MathWorks, Inc., Natick, Massachusetts, United States),

employing the Levenberg-Marquardt back-propagation algorithm as the training function.

Each ANN-based controller was trained using the tuned GS controller output as the target function. Figure 5 shows

the V and α points that were used for training and testing of the ANN-based controller. A subset of the tuned GS

data set at each test condition was employed to trained the ANN-based controller offline, using 70% of the data (7 step

commands). The remaining 30% of the data (3 step commands) was used for offline testing of the trained ANN-based

controller. The resulting controllers are non-linear controllers providing closed-loop stability throughout a continuum

of operating points.

In the next section, representative experiments demonstrating the performance of the controllers presented above

are presented.
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Figure 6 Controller response for validation: (a) GS positive αd , (b) GS negative αd , (c) VS positive αd and (d)

VS negative αd .

IV. Experimental Results
A series of validation experiments, consisting of α doublets, were carried out in the 2.13 m × 1.52 m (7 ft × 5 ft)

low speed wind tunnel to study the performance of the controllers. Figure 5 shows the V and α points where closed

loop validation tests were performed. Each tests consisted of α doublets as commands at each point in the validation

space.

Figures 6a and 6b, show the GS controller average response for positive and negative αd with V = 14 m/s. Only

the negative demand case reaches αd , with the positive demand case displaying a steady state error of ≈ 1.0°. Note

that data for this V and α combination was not part of the training set for the ANN-based controllers. Figures 6c and

6d, show the VS controller average response for positive and negative αd with V = 14 m/s. Both cases display small

Root-Mean-Square-Error (RMSE) values (less than 0.15°) and a rise time similar to that of the GS controller. For this

particular example, the error band for the positive α demand case is narrower when compared to the negative case,

with ≈ 1.0° against ≈ 2.0°. Similar response characteristics where observed for all the other distributed sensing-based

controllers.

From tests like the ones shown in Figure 6 the α tracking error was computed, but only for times where αd was

constant. This process was performed for all points in the validation set space. The resulting data was used to compute

step response characteristics for every controller, i.e. the rise time trs, the α RMSE, as well as the tracking error

minimum, median, maximum, first quartile Q1 and third quartile Q3 values.

Figure 7 shows the α tracking error characteristics for the PVS controller. Panel (a) shows a box-plot of the tracking

error across the α demand range. The plot shows the minimum, median, Q1 and Q3, as well as maximum tracking error

values, for each α demand value. It can be observed that the average absolute median tracking error remains below

0.50° for −5.0° ≤ α ≤ 5.0°. However, the absolute median α error for αd = 7.5° is greater than that of the αd = −7.5°

case, with 1.56° and −0.58°. This behavior was also present in the tracking error of the GS controller used for training,

as a consequence the performance of all the ANN-based controllers for αd = ±7.5° was degraded. One way to improve

the ANN-based controllers performance would be with better training data, another alternative is to use a different

machine learning technique such as reinforcement learning to minimize the tracking error. Panel (b) shows a box-plot

of the tracking error across the V demand range. In general the controller performance is satisfactory across V with
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the average absolute median tracking error below 0.70°. It can also be observed that the median α error decreases as V

increases, particularly for V ≥ 14 m/s, with the absolute median tracking error below 0.20°. Additionally, the tracking

error band decreases for V ≥ 18 m/s, with the distance between the minimum and maximum values less than 3.20°.

Similar α tracking error characteristics where observed for the other distributed sensing-based controllers.

Figure 8 shows a box-plot of the overall tracking error for all the controllers, including the GS and FF controllers.

The GS controller performs the best among the controllers with a median tracking error of 0.04° (RMSE = 0.79°). It

displays the narrowest error band ≈ 3.0°. The FF controller performs the worst among the controllers with a median

tracking error of 1.70° (RMSE = 2.54°), it displays an error band greater than 10.0°. All of the distributed sensing-based

controllers perform well with an average median tracking error of 0.13° (average RMSE = 0.96°). The error band

boundary for these controllers is ≈ 4.5°. The controllers step response characteristics are summarized in Table 2. The

rising times for the GS and distributed sensing-based controllers are very similar, with an overall trs = 0.77 s for the

GS controller against trs = 0.75 s average for the distributed sensing-based controllers. The FF controller displays a

slower response with trs = 1.10 s.

V. Discussion
In this paper, 1-DOF closed loop control wind tunnel experiments for α regulation using a conventional gain

scheduling and various distributed sensing-based controllers were presented. The conventional controller was tuned

experimentally using signals commonly available in traditional sensor suites. The response from the tuned conventional

gain scheduling controller was then used to train various ANN-based controller using different combinations of the

signals from a distributed array of sensors measuring the loads (strain) and flow distribution (pressure) acting over the

wing surface of an instrumented wind tunnel aircraft model.

A series of validation experiments consisting of α steps were carried out to assess the performance of the ANN-

based controllers. In general, the performance of the controllers using distributed array signals was very similar to the
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Table 2 Controllers step response characteristics.

Variable
Controller architecture

GS FF P VS PVS PAS

Rising time (trs) [s] 0.77 1.10 0.73 0.76 0.76 0.76

Median eα[°] 0.04 1.70 −0.11 0.42 0.24 −0.040

Maximum eα[°] 1.56 6.73 2.52 2.65 2.15 2.17

Minimum eα[°] −1.48 −3.77 −2.55 −1.86 −1.58 −2.26

eα Q1 [°] −0.34 0.16 −0.65 −0.17 −0.18 −0.60

eα Q3 [°] 0.42 2.79 0.62 0.96 0.75 0.51

RMSE [°] 0.79 2.54 0.97 0.99 1.02 0.88

conventional controller, with an average trs of 0.77 s for the conventional controller against 0.75 s for the combined

average of the distributed sensing-based controllers. It was found that the worst performing controller was the FF

controller with a α RMSE of 2.54°, against 0.79° and 0.96° for the conventional and the distributed sensing-based

controllers, respectively. Additionally, the tracking error statistics indicate that the VS controller performance is

comparable to that of the P, PVS or PAS controllers, indicating that the strain sensor signals are similarly informative

in relation α as the pressure sensor signals, at least over the range tested.

These results suggest that pressure and strain sensing can be used in combination with ANN-based controllers to

improve flight control performance, by making use of flow state information embedded in the sensing array. Moreover,

α is normally only available through an additional specific sensor for conventional control, while here α has been

estimated as part of the ANN-based controller. In contrast with previous research [26], the approach presented here

uses all the information from the distributed array, increasing robustness to individual sensor failure and/or useful

measurement range.

The approach to learn the control action presented in this paper is known as supervised learning in the machine

learning community, with this particular approach known as End-to-End learning ([30]). It produces a compact

controller with improved performance by directly learning the mappings between control inputs and system outputs, as

shown in Figure 9. This control strategy has the potential to reduce the overall control error as there is no estimation

error introduced in the control loop. When using the conventional controller, gain scheduling needs to be implemented

in order to provide control over a range of different flight speeds, this requires the design of several controllers at

various operating points as well as careful selection of scheduling functions. This design process is simplified when

using the distributed sensing-based controller, as a the output from a few tuned conventional controllers can be used

to train it. The results presented here suggest that this controller is capable of handling changes in parameters without

compromising the overall performance. A potential limitation from this approach is that the controller learns to

minimize error between δe returned by conventional controller and its own δe output, which might not produce the

best α controller, as strictly speaking the α tracking error is not minimized. A possible solution is to use other machine

learning techniques such as persistent self-supervised learning, reinforcement learning or other non-linear control

strategies whose main objective is to minimize the α tracking error.

In order to develop this approach further there are a number of areas of potential development. A factor that has

not been considered so far in the design of the ANN-based controller is the effect that other control surface deflections

have on its behavior. For the system to provide robust control, it must be capable of adapting to changes in other control

inputs. One way of achieving this would be for an ANN to learn the correlation between relevant control inputs and the

expected system response and to then change its output accordingly. This ANN would only then provide an appropriate

control signal. It has been suggested that a similar adaptive filter approach is part of the function of the cerebellum in

the mammalian nervous system [31], with other animal groups having equivalent systems involved with their motor

control. Another factor that has not been addressed is that of in-flight tuning/training. For this control approach to be

successfully used in a real-world environment, a strategy that takes advantage of the behavior learned under controlled

conditions needs to be developed. A possible solution is to use persistent self-supervised learning [32], where the

system uses previously learned input-output mappings to recognize additional, complementary information.
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VI. Concluding Remarks
Wind tunnel testing showed that using an ANN-based controller in combination with signals from a distributed

array of pressure and strain sensors on a wing, it is possible to control α without directly feeding it to the controller. The

use of the distributed sensing-based controller allowed α control, with performance similar to a conventional controller

over a wide range of α and V values. It was found that the distributed array information is essential to provide accurate

control and a narrow α tracking error band.

Overall, these results indicate that bio-inspired sensors, sensory processing and neural inspired control structures

offer an alternative way to thinking about aircraft flight control. Future flight control applications based on distributed

sensing could include control systems that are trained to directly minimize the tracking error and/or make use of

multiple control surfaces, allowing for improved control and increase maneuverability. This could be particularly

useful for unmanned aerial vehicles with high degrees of freedom such as highly flexible or morphing wings, where the

airflow and loads vary dynamically across the wing depending on the configuration of the wing as well as the current

aerodynamic conditions.
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