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The use of flying robots (drones) is increasing rapidly, but their utility is
limited by high power demand, low specific energy storage and poor gust
tolerance. By contrast, birds demonstrate long endurance, harvesting atmos-
pheric energy in environments ranging from cluttered cityscapes to open
landscapes, coasts and oceans. Here, we identify new opportunities for
flying robots, drawing upon the soaring flight of birds. We evaluate mech-
anical energy transfer in soaring from first principles and review soaring
strategies encompassing the use of updrafts (thermal or orographic) and
wind gradients (spatial or temporal). We examine the extent to which
state-of-the-art flying robots currently use each strategy and identify several
untapped opportunities including slope soaring over built environments,
thermal soaring over oceans and opportunistic gust soaring. In principle,
the energetic benefits of soaring are accessible to flying robots of all kinds,
given atmospherically aware sensor systems, guidance strategies and gust
tolerance. Hence, while there is clear scope for specialist robots that soar
like albatrosses, or which use persistent thermals like vultures, the greatest
untapped potential may lie in non-specialist vehicles that make flexible
use of atmospheric energy through path planning and flight control, as
demonstrated by generalist flyers such as gulls, kites and crows.
1. Introduction
The use of flying robots is growing rapidly across a diverse range of applications.
Current applications include goods delivery, environmental monitoring, infra-
structure inspection, search and rescue, and reconnaissance and surveillance
[1]. Unfortunately, poor endurance and an inability to operate in windy or turbu-
lent conditions present bottlenecks for many flying robots [2]. Yet, birds manage
to soar flexibly in awide range of challenging conditions (figure 1a), demonstrat-
ing the existence of many untapped opportunities for harvesting atmospheric
energy in natural and anthropogenic landscapes. These everyday opportunities
for atmospheric energy harvesting are of clear technological relevance, given that
the range and endurance of a small uncrewed air system (sUAS) is limited by
its onboard energy capacity [3]. Most sUAS employ electric propulsion, despite
the low specific energy (up to 0.9 kJ g−1) of state-of-the-art lithium battery tech-
nologies [4], compared with the high specific energy of the fat-based energy
stores (37.6 kJ g−1 wet mass) that birds metabolize over most of the duration of
their long endurance flights [5]. Atmospheric energy harvesting therefore has
the potential to extend electric vehicle range and endurance substantially [2].
Even so, there have been few practical demonstrations of autonomous soaring
to date [6–14], and all have been implemented on high-performance sailplanes
flying in favourable conditions, rather than on operational sUAS flying in every-
day environments. By contrast, birds including gulls, falcons, kites and crows can
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(c)

Figure 1. Soaring morphology and flight behaviour of birds. (a) Gulls Larus spp. and crows Corvus spp. soaring by combining gliding and flapping in high winds;
note bending of palm trees. (b) Common kestrel Falco tinnunculus wind-hovering in strong orographic updraft; note morphing wings with alula feathers extended as
a leading-edge flap; see electronic supplementary material, Movie S1. (c) Black vulture Coragyps atratus (above) and magnificent frigatebird Fregata magnificens
(below) soaring the same thermal updraft (i.e. both birds in same photograph); note their very different flight morphologies: the frigatebird has approximately
twice the aspect ratio and two-thirds the wing-loading of the vulture. (d ) Turkey vulture Cathartes aura soaring an orographic updraft; note dihedral with wingtips
canted upwards providing lateral stability. (e) Swallow-tailed kite Elanoides forficatus soaring low over rainforest; note forked tail used in lateral control. ( f ) Brown
pelicans Pelecanus occidentalis performing sweeping flight along a long, steady wave in calm conditions; note the similar altitude of the four birds, sustained by the
associated updraft. (g) Migrating white storks Ciconia ciconia; flocking enables knowledge transfer between generations and remote visual detection of thermals
through observation of others. Arrows indicate features of interest described in legend. Original images by Graham Taylor, except (b) by Kate Reynolds.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20220671

2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

12
 D

ec
em

be
r 

20
22

 

be seen soaring these environments opportunistically in a
wide range of weather conditions, using a mixture of flapping
and gliding flight and widely different flight morphologies
(figure 1a).

Our goal in this review is therefore to identify avian
soaring strategies whose translation to engineering could
result in substantial improvements in the range and endur-
ance of future sUAS. With this in mind, we do not set out
to review specific algorithmic aspects of technical appli-
cations of autonomous soaring, which have been reviewed
elsewhere in relation to gradient soaring [15] and thermal
soaring [16,17]. Rather, we consider the extent to which tech-
nical research has yet explored the myriad opportunities for
soaring that birds already exploit across the wide range of
natural and anthropogenic (e.g. built) environments in
which current and future sUAS may operate. Our overarch-
ing aim is therefore to inspire new avenues of research in
autonomous soaring, by synthesizing the growing body of
research on soaring birds. As we show, some of the most sig-
nificant new opportunities may lie not in the strong updrafts
and wind gradients that have been the focus of most technical
and biological research to date, but in the everyday
opportunities afforded by small-scale updrafts, turbulence
and shear. To demonstrate this, we review what is known
of the soaring strategies of birds, with the aim of identifying
key themes, knowledge gaps and missed opportunities. We
begin by elaborating the mechanical energy flows associated
with soaring flight (§2), which provides a formal basis for
analysing the full scope of these opportunities. We then con-
sider the wide-ranging atmospheric conditions that birds
exploit for soaring, their associated design considerations
and their relationship to the state-of-the-art in autonomous
soaring (§§3–5). Finally, we identify new prospects for
autonomous flight in relation to sensing systems, control
algorithms and path planning, exploring which specific
opportunities are being missed, and how these can be
exploited (§6).
2. Energetics of atmospheric energy harvesting
It can be shown from first principles that the mass specific
flow of aerodynamically useful mechanical energy (de/dt)
in soaring flight is that given by equation (2.1) below (see



(a) (b) (c)

wind direction
wind direction
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Figure 2. Opportunities for static soaring in updrafts. (a) Soaring in thermals using typical circling flight behaviour. (b) Soaring ahead of cold fronts. (c) Soaring in
orographic updraft on windward side of landscape feature.
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[18,19] and electronic supplementary material, Text for deri-
vation). Our review is therefore structured around the
several distinct opportunities for atmospheric energy
harvesting that this equation identifies. Equation (2.1) shows
that the opportunity to harvest atmospheric energy in
flight exists if either: (i) the wind has a mean upward
component; or (ii) the wind varies spatially or temporally.
Both circumstances are likely to co-occur, but whereas
the wind supplies gravitational potential energy when
energy is harvested from an updraft (which is called static
soaring), it supplies aerodynamic kinetic energy when
energy is harvested from a spatio-temporal wind gradient
(which is called dynamic soaring). Each of these distinct
sources of atmospheric energy is well known, but writing
them out explicitly provides the following complete and
succinct expression:

de
dt

¼ (T �D)V
zfflfflfflfflfflffl}|fflfflfflfflfflffl{
drag losses

net of thrust

m
þ gWU(s,t)

zfflfflfflfflffl}|fflfflfflfflffl{static soaring

� V � @W
@t

þ V � @W
@s

ds
dt

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{dynamic soaring

, ð2:1Þ

whichmay be used to elaborate all the opportunities that birds
and sUAS can exploit for harvesting atmospheric energy.
Here, the air velocity V of the bird/vehicle and the wind vel-
ocity W are both defined in an Earth-fixed axis system,
where WU is the upward component of W. The first term on
the right-hand side represents the aerodynamic losses due
to drag (D) net of thrust (T ) at a given airspeed V ¼ kVk,
expressed relative to body mass (m). These aerodynamic
losses are offset by the energy harvested from the atmosphere
in soaring flight, and we do not consider them further here.
The second term represents the mass specific energy flow
due to static soaring, which is the product of the gravitational
acceleration (g) and local updraft speed WU(s, t), expressed in
terms of a path coordinate (s) and time (t). Section 3 focuses
upon the exploitation of static soaring by birds, distinguishing
their energetically equivalent but behaviourally different use
of thermal versus orographic updrafts. The final two terms
within the square brackets split the total specific energy flow
due to dynamic soaring,�V � dW=dt, into components arising
from the explicit and implicit time-dependence of the wind
when traversing a spatio-temporally varying wind field.
These two parts describe gust soaring and gradient soaring
respectively, which are distinct but energetically equivalent
forms of dynamic soaring.
3. Static soaring: exploiting updrafts
The specific energy flow associated with static soaring,
gWu(s, t), is positive if the wind has an upward vertical
component (Wu > 0) and negative if it has a downward com-
ponent (Wu < 0), so energy is gained in an updraft but lost in
a downdraft. Somewhat surprisingly, perhaps, this specific
energy flow is independent of any morphological properties
of the bird or vehicle itself. Hence, while we tend to associate
static soaring with high-aspect ratio wings and low
wing loading (see §3.3 below), these features of a bird’s
flight morphology serve to enable the efficiency, rather than
occurrence, of atmospheric energy harvesting. The ability to
exploit static soaring ultimately hinges on the ability to find
and remain within the strongest region of an updraft,
which may be achieved either by planning a path which
biases the expected vertical component of the wind
upward, or by reacting appropriately to the local wind con-
ditions. Either way, the principle is the same: dwell in
updrafts and avoid downdrafts.
3.1. Opportunities for static soaring
Atmospheric updrafts can occur in one of twoways, leading to
the two distinct types of static soaring: thermal and oro-
graphic. Thermal soaring is possible in the buoyant updrafts
that occur because of warming of the air close to the Earth’s
surface (figure 2a, left), convection at the base of clouds
(figure 2a, right), or the intrusion of a cold front into a mass
of warmer air (figure 2b) [20]. Orographic soaring is possible
where an updraft is created when winds are obstructed by
ridges, buildings, cliffs, ships, waves or vegetation
(figure 2c). Both kinds of soaring are quite predictable and
have been used to explain the routes that birds follow, on
spatial scales ranging from local [21–24] to continental [25–
28]. Thermal-soaring behaviour is usually favoured over oro-
graphic soaring by land-soaring birds such as eagles [29],
which may delay their migration until weather conditions
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suit, but will switch to using orographic updrafts when time is
of the essence [30]. This reflects the fact that thermal soaring
offers greater flexibility over the routes that a bird can take
over land [31], and perhaps also more updrafts available to
exploit in the heat of the day. More generally, land-soaring
birds display a flexible exploitation strategy thatmixes thermal
and orographic soaring according to the local conditions
[21,23,25,26,30,32,33]. A similarly flexible approach to the
use of thermal versus orographic updrafts is likely to be
important in land-soaring sUAS, and both sources of updraft
may also be accessible at sea.

Most studies of avian static soaring consider specialized
land-soarers such as vultures whose form is adapted to
flying in updrafts strong enough to sustain gliding flight
[34,35]. In practice, most soaring birds also use flapping, and
the world’s heaviest soaring bird, the Andean condor Vultur
gryphus, is considered noteworthy in being a static-soaring
species that almost never flaps its wings [36]. This presumably
reflects the fact that the same energetic principles apply in
powered and unpowered flight (equation (2.1)), such that
many birds exploit weak updrafts using a combination of
both gliding and flapping flight. For example, the common
kestrel Falco tinnunculus specializes in wind-hovering over
natural and anthropogenic landscape features (figure 1b; elec-
tronic supplementary material, Movie S1) [37,38], hanging on
fixed wings in strong updrafts, but interspersing flapping
with gliding in weak updrafts [39]. Other species that glide
when possible will often flap in weak thermal updrafts
[40–46], or in orographic updrafts produced by small-scale
features [21] and weak winds [47]. Larger soaring birds some-
times use flapping for control rather than thrust production,
tucking their wings in response to turbulence, in a motion
resembling one half of a flapping cycle [48,49]. Nevertheless,
these observations raise the intriguing possibility that many
other birds that we do not conventionally think of as soaring
species, such as domestic pigeons Columba livia domestica,
may in fact be benefitting routinely from the energetic gains
provided by flapping in updrafts. Models of the energetics of
flapping flight have not in general considered the energetic
subsidy that updrafts provide [46], which may be an over-
looked feature of the energetics of commuting and migration
in species using flapping flight.

In summary, birds of various forms and sizes opportunis-
tically exploit updrafts, using a mixture of powered and
unpowered flight. It follows that robotic vehicles could
make similarly flexible use of soaring opportunities when
monitoring anthropogenic structures that generate their
own updrafts [50–52], or when flying specific routes within
an urban environment where updrafts are prevalent [33].
Indeed, a coastal development with a reliable prevailing
wind might even be designed to promote such opportunities
[22]. Such behaviours could be integral to the flight of almost
any atmospherically aware robot, as even a hovering multi-
rotor positioning itself in the updraft on the windward side
of a building will reduce the vertical thrust that it requires
[53]. The key opportunity that we see is for small flying
robots of all kinds, whose operation at low altitudes within
the atmospheric boundary layer creates opportunities for
exploiting updrafts, coupled with an inherent risk of encoun-
tering downdrafts. Similar opportunities are present on other
planets with an atmosphere, so need not be limited to Earth-
bound robots, given the recent success of NASA’s Ingenuity
helicopter on Mars [54].
3.2. Atmospheric aspects of static soaring
3.2.1. Thermal soaring
A thermal updraft comprises a rising mass of air that is
warmer than the surrounding air, and hence thermally buoy-
ant (figure 2a,b). Thermals vary considerably in size and
intensity—up to thousands of metres in height and width,
with updraft speeds from 1–2 m s−1 [55] to 5 m s−1 [56].
Columnar thermals have a strong convective core rising in a
continuous stream up from the ground [57] and are typically
associated with a weaker surrounding downdraft (figure 2a,
left) and sometimes also with a weaker updraft. By contrast,
bubble thermals comprise a toroidal vortex ring structure of
limited vertical extent that itself rises upward like a bubble in
a fluid [57], such that while the updraft through the centre of
the vortex ring may be strong, the air beneath it might not be
rising at all (figure 2a, right). Because thermals result from
atmospheric temperature differentials caused by uneven
solar heating of the Earth’s surface, thermal formation depends
on local ground cover and localweather conditions. These arise
in particular locations on timescales lasting from seconds to
hours [26]. Where thermals are triggered at regular intervals
by solar heating of specific ground features, wind drift can
cause a regularly spaced thermal street to form [20,29].

Soaring birds usually circle close to the thermal core,
thereby maximizing potential energy gain and inter-thermal
glide range in cross-country flight [20,29,58]. Soaring birds
have also been found to optimize turn radius by varying
bank angle [59] or airspeed [60] as a function of altitude to
compensate for altitudinal variation in thermal size and air
density. However, in regions where thermals are abundant,
and particularly where thermal streets occur, birds may pass
straight through a thermal without circling [20,29,33], demon-
strating flexibility in the behavioural strategies that they use to
soar. This is called dolphin-style flight [61] and maximizes the
speed at which ground is covered, rather than maximizing
potential energy gain. Birds using dolphin-style flight slow
down when they sense a thermal [29] to increase the potential
energy gained as they transit it, and fly faster in static or sink-
ing air to minimize their losses [20]. However, it is likely that
the presence of visible cues in the form of a cloud street
could facilitate proactive path planning in dolphin-style
flight. Circling and dolphin-style flight are both well known
to glider pilots, so thermal-soaring sUAS could presumably
use a similarly flexible range of behaviours to exploit thermal
updrafts [62]. Of course, the requirement to circle within a
thermal core may be avoided by hovering rotorcraft, which
could potentially exploit thermals to attain altitude faster
and with lower energy consumption than would otherwise
be required in a powered climb—either by hovering within
the thermal, or using dolphin-style flight through it.

Thermals are strongest on land, where they form only
during the day, but weaker thermals may form at sea at
any time of the day or night owing to the thermal stability
of oceanic surface waters. This phenomenon is exploited
by frigatebirds Fregata spp. (Figure 1c) [55], which may soar
to altitudes of greater than 4000 m on the open ocean by
using the weak thermal updrafts found beneath cumulus
clouds [63] and the stronger updrafts within them [44,64].
Some raptors also make opportunistic use of thermal lift
over the sea on migration [45,65], and flocks of gulls Larus
spp. have been observed using coordinated low-altitude cir-
cling to trigger thermal formation in the unstable boundary
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layer at the sea’s surface [66]. Levant sparrowhawks Accipiter
brevipes have been reported to use the weak thermal updrafts
caused by heating of tarmac along roads in desert environ-
ments for linear low-altitude thermal soaring on migration
[67], and common swifts Apus apus have been reported soar-
ing the thermal updrafts associated with sea breeze fronts
[68]; figure 2b. Nocturnal thermal soaring is not usually poss-
ible on land, but has been reported in turkey vultures
Cathartes aura (figure 1d ) over flared methane vents at a land-
fill site [69], and may be possible in some other anthropogenic
environments with flaring such as oil fields. In summary,
although the principles and practice of strong-thermal soar-
ing are well understood by glider pilots, birds offer insights
into a range of novel weak-thermal soaring behaviours [70]
that sUAS could potentially exploit. The utility of these
(and other) novel atmospheric energy sources will of course
depend upon the extent to which they provide useful
energy gain in relation to the costs or constraints associated
with exploiting them.
9:20220671
3.2.2. Orographic soaring
An orographic updraft is produced when a horizontally
moving air mass is deflected upward over topographical fea-
tures or other structures in the environment (figure 2c). The
strength, size and shape of the updraft are therefore influ-
enced by the strength and direction of the wind in relation
to the size, shape and orientation of the obstacle. In contrast
with thermal updrafts, which can be thousands of metres in
height over the oceans, orographic updrafts tend to be rel-
evant only at lower altitudes relative to the ground. Slopes,
ridges, dunes, cliffs, mountains and other elevated terrain
generate strong and predictable orographic updraft, so
much of the research on orographic soaring concerns how
large soaring birds such as eagles exploit this on migration
[26,71]. Much less is known of how this reliable energy
source is used in everyday flight behaviours, but soaring rap-
tors routinely use orographic updraft in the mornings when
thermals have not yet developed [72], and gulls will routinely
soar the windward sides of buildings [22], drainage dykes
[21] and ships [73], and switch to using orographic updraft
in conditions unfavourable for thermalling [33]. So adept
are they at exploiting local updrafts that gulls are even able
to soar small-scale landscape features such as roads and
tree lines [24]. The accompanying turbulence makes this a
challenge, but may be actively exploited by some specialist
soarers such as turkey vultures that also fly along tree lines
[74]; see below. Gulls flying ahead of seafront buildings
have been found to favour parts of the wind field in which
the effects of gusts are reduced [22]. By making use of such
small-scale structures generating orographic updraft, birds
may significantly reduce the energetic costs of flight during
their daily activities, so it would clearly make sense to exploit
the same opportunities in sUAS during low-altitude oper-
ation. For example, seabirds have learned to exploit the
updrafts created by ship structures, and the potential of this
opportunity for maritime patrol vehicles has recently been
demonstrated for a sUAS soaring the updraft of a ship at
less than 5% throttle [75].

Waves are the only natural source of orographic updraft on
the open ocean and can generate updrafts even in the absence
of wind, owing to the wave’s own progression relative to the
air. Their relatively small scale limits the maximum achievable
increment in potential energy, so instead of gaining significant
altitude, pelagic birds such as albatrosses, fulmars, gulls and
pelicans typically soar in ground effect just above the surface
(figure 1f ) on the windward side of long, steady waves
[56,76]. This wave-slope soaring behaviour, called sweeping
flight [77], is observed along moving waves even in zero
wind [76,78] and allows the bird to increase glide speed with-
out losing altitude, by using the supply of potential energy
obtained through static soaring to offset the higher drag
losses incurred at higher airspeeds [56]. This elevated glide
speed can be converted to potential energy when reaching
the end of the wave, thereby allowing the bird to glide against
the wind to restart the process on another wave [77]. This
unconventional form of static soaring could be accessible to
maritime sUAS including small ekranoplans (i.e. vehicles
designed to fly in ground effect, typically over the sea).
Common swifts Apus apus have also been recorded perform-
ing a behaviour resembling sweeping flight in the thermal
updrafts present along sea breeze fronts [68], which they
seek out in the same way as human glider pilots.

3.3. Design considerations in static soaring
3.3.1. Flight morphology
Because the specific energy flow in static soaring, gWu(s, t),
depends only on updraft strength (equation (2.1)), any bird
or vehicle can realize energetic gains from flying in an updraft.
Nevertheless, the ability to exploit such flows to glide long dis-
tances depends on having a sink rate no greater than the
updraft speed. In gliding, sink rate scales as the square root
of wing-loading, so lower wing-loadings facilitate exploitation
of weaker updrafts [34]. Other things being equal, sink rate
will also be lower for a higher aspect ratio wing, because of
its higher lift-to-drag ratio, so higher aspect ratio wings can
also facilitate exploitation of weaker updrafts [34,35]. Both fea-
tures are taken to an extreme in frigatebirds, whose ability to
exploit weak thermals over the open oceans [44] is explained
by their exceptionally low wing-loading and high aspect
ratio [55,63] relative to other thermal-soaring birds
(figure 1c). In principle, powered flight can be used to
remain in an updraft weaker than the airframe’s sink rate,
where the potential benefits will depend on the extent to
which the energy gained exceeds the cost of obtaining it.
Even so, because aerodynamic power requirements scale as
mass times the square root of wing-loading [34], birds or
vehicles with lower wing-loading will always be better able
to make use of weaker updrafts in powered flight.

Gaining energy effectively in an updraft is only one
element of cross-country soaring, which also involves gliding
quickly and efficiently between updrafts. This means having a
high best glide speed, defined as the groundspeed attained at
minimum glide angle in still air, which depends on having a
high aspect ratio wing and a reasonably high wing-loading
[34]. This is also important in sweeping flight along ocean
waves (figure 1f ), so species that make use of this technique
have long slender wings enabling high-speed flight with a
shallow glide angle [77]. For species such as gulls, which com-
bine thermal and orographic soaringwith flapping, wing form
is likely to be a compromise in terms of wing-loading and
aspect ratio. Specifically, the intermediate aspect ratio wings
of gulls give good glide performance, but with lower power
requirements during flapping than a higher aspect ratio
wing would provide, which makes them well suited to
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switching efficiently between flapping and soaring flight
modes [33]. Another potentially conflicting design objective
is the need to turn tightly to exploit smaller, weaker thermals.
Minimum turn radius scales linearly with wing-loading
[34,55], so for a given best glide speed, the broad wing chord
of a typical land-soaring bird confers a tighter minimum
turn radius than the narrower wings typical of sea-soaring
birds [34]. There is therefore a trade-off between straight and
turning flight performance, which will need to be optimized
at the design stage in soaring sUAS.

Different species of bird appear to be optimized for differ-
ent updraft intensities suited to their own specific flight
characteristics [29]. Turkey vultures (figure 1d ), for example,
have a 30% lower wing-loading than black vultures
(figure 1c) of similar body mass, which allows them to
ascend in weaker thermal conditions and hence earlier in the
day [79]. Conversely, it makes them lesswell suited to covering
long distances after leaving a thermal, which may at least
partly explain why they remain closer to the ground than
species with higher wing-loadings [74,79]. Specific food-
searching strategies may influence this preference, as flying
closer to the ground may help in sensing odour cues versus
relying on visual cues at higher altitudes. Generally, larger
birds are more likely to make use of thermal updrafts than
smaller ones [34]—presumably because they acquire dispro-
portionately more energetic benefit from soaring owing to
the adverse scaling of aerodynamic power requirements
with body mass [29]. These effects can be quite subtle: even
within a species, the flight behaviour of the larger sex can be
more strongly influenced by environmental conditions
affecting updraft availability [80].

It is an open question whether similar scaling principles
will hold true of sUAS.Most technical research has considered
vehicles with wingspans greater than 1.5 m, which limits
atmospheric energy harvesting to regions where strong ther-
mals are prevalent, or to localities with reliable orographic
updrafts. Smaller vehicles with lower wing-loading should
be able to exploit smaller, weaker updrafts, but their lower
flight speed would also be expected to increase their sensi-
tivity to turbulence [81]. Gust tolerance may therefore set a
lower practical size limit for robotic soaring, depending on
the turbulence of the environment in which the vehicle must
operate. Conversely, an upper size limit is likely to be set by
the higher sink rate of a larger aircraft in combination with
its lower manoeuvrability. Even so, the success of crewed sail-
planes demonstrates that in appropriate conditions, updrafts
can be used by larger aircraft to soar on flights of hundreds
to thousands of kilometres.
3.3.2. Sensory systems
To exploit updrafts, birds must first locate them. Birds almost
certainly remember where updrafts occur [82], and social
species such as storks [83] and vultures [58] may pass this
knowledge to their offspring through demonstration—
particularly on their first migration (figure 1g). It is also
likely that birds can predict updraft formation through experi-
ence, as vultures have been found to adapt their decisions on
when to depart thermals on the basis of recent experience of
the prevailing conditions [84]. Among the mechanisms of
updraft detection that have been proposed (figure 3a), vision
is the only one that birds use remotely. Like human glider
pilots, birds detect thermal updrafts at a distance by observing
other birds circling within them [29,66,86–88]. Social species
such as vultures [87] and storks [88] use this for collective sen-
sing [29,89,90] (figure 1g), flying faster between thermals if
they have sight of another individual in a destination updraft
[87]. Remarkably, even species which do not usually soar (e.g.
common starling Sturnus vulgaris) have been observed to
climb successfully in a thermal when a soaring species is pres-
ent as a guide [86]. Soaring birds also use growing cumulus
clouds to identify the location of thermals [29,63] and will
sometimes enter clouds to climb [29,64]. It is likely that they
use the presence of haze to detect the presence of sea breeze
fronts [68], and it has even been speculated that birds can
see updrafts by observing heat shimmer or aerosol movement
[82], although there is no direct evidence to support this. Birds
can sense atmospheric infrasound at frequencies from 0.5 to
10 Hz [91] and may be able to locate its source by detecting
Doppler shifts [92], which could be used for remote detection
of updrafts, weather fronts and wind interacting with terrain,
but again this has not been tested empirically. The sensory
mechanisms by which birds may predict or remotely detect
updrafts clearly warrant further research. For instance, we
may speculate that birds learn to predict updrafts by observing
the association between energy gain and terrain (e.g. flying
towards ridgelines expecting orographic updraft, or bare
hillsides expecting thermals).

Birds can almost certainly detect updrafts directly as they
enter them. The otolith organs of the inner ear are able to
detect linear accelerations [93,94], which are felt as an
upward surge on entry to an updraft and may also be used
for thermal centring. Birds can detect small changes in air
pressure over short periods, probably by using the paratympa-
nic organ in the middle ear [95], so may be able to track
changes in altitude through the accompanying barometric
pressure variation. Visual cues such as optic flowmay provide
an alternative mechanism for enabling sensing of the altitude
gain [96] in a thermal, although this is likely to be less sensitive
than acceleration/force-based cues except when flying close to
the surrounding terrain. Again, the sensory mechanisms by
which birds detect updrafts as they encounter them warrant
further research.

Little is known of the behavioural mechanisms that birds
use to remain circlingwithin a thermal core, but specialist ther-
mal-soaring species have presumably evolved reactive control
mechanisms to do so, probably by sensing differences in load-
ing across the wings or the roll motions that result from these.
For example, the roll moment resulting from the difference in
the aerodynamic forces on the two wings has been shown to
provide sufficient information to enable good thermal-soaring
performance when combined with information on vertical
acceleration [97]. Proprioception, defined as the ability to use
muscle strain receptors to sense the pose of body parts and
the forces acting on them, therefore represents another mech-
anism bywhich birds may sense updrafts. Birds can also sense
changes in the airflow over their wings using mechanorecep-
tors near the feather follicles [98]. Local flow reversal deflects
the covert feathers (figure 3b,c) so mechanoreceptors at their
base may sense flow separation or changes in angle of
attack [85,99]. The alula feathers forming a leading-edge flap
(figure 1b), and primary feathers forming the slotted wingtips
(figure 3d ), each sustain strong aerodynamic loads in updrafts
that can presumably be sensedmechanically. Feather mechan-
oreceptors also respond to vibration, which may be important
in sensing airspeed and flow separation. Visual copying



–optimized search flight patterns

–inertial accelerations
–proprioception
–airflow sensing

acoustical inference
–infrasound detection
–acoustic emission
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– aerosol motion detection
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   objects within updrafts
– seeing likely sources of updrafts

–prior knowledge of updraft locations

updraft localization

updraft detection
localized sensing remote sensing

search memory
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Figure 3. Possible mechanisms of updraft detection and localization by birds. (a) Hypothesized mechanisms of updraft detection. (b–d) Onboard video along wing
of a steppe eagle Aquila nipalensis soaring orographic updrafts on sea cliffs [85]. (b,c) Aeroelastic deflection of covert feathers at wing leading-edge as bird
encounters clifftop updraft; de-interlaced video frames at 0.06 s separation. (d ) Aeroelastic deflection of wingtip primary feathers when turning.
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behaviour may also be used to remain within a thermal if a
suitable visual guide is present.
4. Dynamic soaring: exploiting gradients and
gusts

Equation (2.1) shows that the total specific energy flow due to
dynamic soaring, −V · dW/dt, is positive whenever the wind
velocity W changes in opposition to the velocity V of the bird
or vehicle relative to the air. This outcome can be achieved
by flying windward in a wind whose speed is increasing
through time, or leeward in a wind whose speed is decreas-
ing through time, which facilitates cyclical dynamic soaring
wherever there is a reliable gradient or step-change in wind
speed [100]. Aerodynamic kinetic energy will be lost if the
windward–leeward phasing of flight is reversed. Hence,
whereas static soaring is conditional on being in the right
place at the right time, dynamic soaring is conditional on
moving at the right velocity for a given point in space and
time. The phasing of the kinetic energy flows in dynamic
soaring will appear different if the kinetic energy is defined
with respect to the inertial speed of the bird/vehicle, rather
than its airspeed. Nevertheless, despite earlier controversy
in the literature, these two perspectives are now agreed to
be equivalent [101]. Considering the flow of aerodynamic
kinetic energy, as in equation (2.1), focuses attention on the
spatial and temporal wind gradients that are essential to
dynamic soaring.
4.1. Opportunities for dynamic soaring
The opportunity for dynamic soaring exists whenever the
wind speed varies in space (which is the basis of gradient
soaring) or time (which is the basis of gust soaring). While
gradient soaring and gust soaring exploit distinct opportu-
nities, they are energetically equivalent (equation (2.1)).
Hence, as the wind field is rarely constant and never homo-
geneous in the atmospheric boundary layer, we should
typically expect to find mixed exploitation of both kinds of



(a) (b) (c)wind gradient
wind direction

recirculation
recirculation

turbulent shear layer

turbulent
shear layer

wind direction

Figure 4. Opportunities for dynamic soaring in spatially varying wind fields. (a) Gradient soaring within the thick shear layer over the sea’s surface. (b,c) Gradient
soaring across the thin shear layer that peels off from a breaking wave (b) or sharp ridge (c) and which separates fast-moving air above from slow-moving
recirculating air below.
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dynamic soaring. Moreover, because thermal and orographic
updrafts are predictably associated with wind shear and
turbulence, we should further expect the static-soaring strat-
egies of birds to be adapted to make additional gains
through gust and gradient soaring.

Because aerodynamic kinetic energy can be obtained
through dynamic soaring in powered as well as unpowered
flight, pelagic birds that engage in dynamic soaring when
the wind is strong will often flap their wings when the wind
is weak [19,102–104]. Nevertheless, the great majority of
research on avian dynamic soaring has focused on albatrosses
[77,78,105–110], which are capable of flying immense dis-
tances without flapping, and whose flight morphology is
highly specialized for this function [111]. Moreover, because
it is challenging to demonstrate empirically which sources of
atmospheric energy are being employed in situations where
a bird uses flap-gliding flight, or where gradients and updrafts
occur together (as they do whenever waves are present),
the use of gradient soaring has only been confirmed in alba-
trosses and (more recently) shearwaters [19]. Nevertheless,
for the reasons discussed below, dynamic soaring can be
assumed to be prevalent across a much wider range of species
than this. Harvesting energy from spatio-temporal wind gra-
dients therefore has great potential for increasing the range
and endurance of a variety of sUAS, because surface shear is
present whenever there is a wind, and its occurrence is not
necessarily tied to specific landscape features. This makes
dynamic soaring practical close to the Earth’s surface, without
having to deviate too far from a path planned to meet other
mission requirements. For this reason, autonomous dynamic
soaring is now a highly active field of research [112], although
the great majority of studies to date have been done in
simulation rather than in technical implementation.

4.2. Atmospheric aspects of dynamic soaring
4.2.1. Gradient soaring
The aerodynamic interaction of wind and terrain creates spatial
wind gradients with predictable structure. Such gradients occur
within the thick shear layer forming the atmospheric boundary
layer (figure 4a), and across the thin shear layer that peels off the
crest of a sharp ridge or breaking wave, separating the fast-
moving air above from the still air in its lee (figure 4b,c). Both
phenomena are used by pelagic birds to glide great distances
without flapping, and the largest albatrosses have been tracked
flying using this technique for over 13 days at 950 km per day
[111]. Spatial gradients are also ubiquitous in well-developed
turbulence andmay therefore be used by birds for gradient soar-
ing [74], but as these gradients are usually unpredictable, they
effectively blend with gust soaring. Equation (2.1) shows that
the specific energy flow associated with gradient soaring is

� V � @W
@s

ds
dt

,

where s is a path coordinate. Hence, because the wind is
expected to be slower closer to a surface, the general principle
of flying windward in a wind of increasing speed and leeward
in a wind of decreasing speed can be restated more specifically
for gradient soaring as climbingwindward and descending lee-
ward [100]. An alternating windward rise and leeward fall is
therefore diagnostic of gradient soaring [18,108,110,113,114],
usually involving an undulating flight path whose sinuosity is
expected to vary according to how the overall travel direction
relates to the overall wind direction [106,107,109]. This phasing
of the horizontal and vertical components of flight can be used
to identify dynamic soaring even in cases where the details of
the wind field may be unknown [19].

Trajectory optimization in gradient soaring is a complex
problem that typically involves detailed modelling of how
the flight dynamics interact with the wind field. Most studies
assume a logarithmic wind profile, which implies that most
of the kinetic energy gain will occur in the region of maxi-
mum shear close to the surface [115]. However, this is also
where waves and turbulence interfere most strongly with
the assumed wind profile, which may explain why these
models do not closely predict the flight trajectories recorded
in albatrosses, which follow shallower arcs than expected
[115]. Even so, it is possible to draw some quite general con-
clusions about trajectory optimization for dynamic soaring
without the need for a detailed model of the wind gradient.
For a horizontal wind field with local vertical shear gradient
σ≥ 0, such as can be expected over a flat surface, we may
rewrite the specific energy flow associated with gradient
soaring as follows:

� V � @W
@s

ds
dt

¼ �V2s cos g sin g cosh, ð4:1Þ

where γ is the aerodynamic flight path angle defined as the
elevation angle of the bird’s air velocity V with respect to
the horizontal, and where η is the heading-to-wind angle
defined as the angle between the horizontal wind vector
and the horizontal component of the bird’s air velocity [19].
It is clear by inspection that the rate of energy harvesting is
proportional to the quantity eh ¼ �sgng cosh, called the hori-
zontal wind effectiveness [19], where the signum function
sgng ¼ +1 is positive when ascending and negative when
descending. The rate of energy harvesting is therefore maxi-
mized by aligning ascent and descent through the shear



(iii)

(ii)

(i)

Figure 5. Mixed mode soaring in a spatio-temporally varying wind field. Composite image from the video of a Eurasian jackdaw Corvus monedula landing into the
wind; 0.1 s timesteps shown. The bird is shown: (i) making a left-handed turn into the wind; (ii) entering a shallow climb in the lee of the building and (iii)
climbing almost vertically as it exits the lee of the building and soars the strong headwind and presumed updraft it encounters. Turbulence apparent from the bird’s
movements (ii) is consistent with transit through a separated shear layer. Original video by Graham Taylor; see electronic supplementary material, Movie S4.
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layer as closely as possible with the windward and leeward
directions, respectively. It follows that the opportunity for
gradient soaring is greatest when the overall direction of
travel is across the wind, because then the kinetic energy
that is gained on the upwind and downwind legs can
be used to enable crosswind progression. Gradient-soaring
Manx shearwater Puffinus puffinus have been found to bias
their outbound foraging journeys in a crosswind direction
[19], and Bulwer’s petrels Bulweria bulwerii have also been
found to have a strong preference for crosswind progression
when foraging in North Atlantic trade winds [116]. The uti-
lity of gradient soaring to marine sUAS will therefore
depend upon the extent to which progress must be made in
other directions relative to the wind.

Other observational studies have indicated that pelagic
birds exploit the rapid increase in wind speed encountered
when climbing out of the leeward eddy behind a tall wave
[56,105,107], rather than the less-rapid increase in wind speed
encountered above a flat surface. In this case, most of the har-
vested energy is obtained impulsively when flying across the
thin shear layer that results from the wind flow separation
over the crest of an obstruction, rather than continuously
when flying through the thick atmospheric boundary layer.
This behaviour is close to the step model envisaged in
Rayleigh’s original description of dynamic soaring [100] and
has been exploited by remote-controlled sailplane pilots to
achieve speeds in excess of 244 ms−1 in the lee of sharp
ridges during repeated loopingmanoeuvres [113,117]. Detailed
observations of the gradient-soaring behaviours of pelagic
birds could therefore play an important role in developing gra-
dient-soaring strategies for sUAS [15,118]. This could include
both the initial specification and subsequent training of a
controller adapted using machine learning. Machine learning
of gradient soaring has only been undertaken in simulated
environments [119–123], so the real-world performance of the
resulting controllers is only as good as the assumptions they
learn on the spatio-temporal structure of the wind field.
Directly measuring the wind environment via flying robots is
in its infancy with only limited work using anemometers
affixed to sUAS (e.g. [124,125]). Studying bird behaviour, on
the other hand, provides a proven starting point for learning
to fly in challenging real-world environments [126], particu-
larly if inertial measurements of the bird’s flight behaviour
are combined with local airspeed measurements made using
a Pitot tube [18].
4.2.2. Gust soaring
Gust soaring has been much less well studied in birds, which
reflects the difficulty of measuring or predicting the turbu-
lence that they encounter locally. Nevertheless, birds can
often be seen performing flight manoeuvres that cannot be
explained by any other mechanism [18,74,113,127]. This is
most obvious when a bird that is making slow progress
against a strong headwind suddenly gains altitude
(figure 5), often wheeling downwind at very high ground-
speed. This gain of altitude must reflect the conversion of a
sudden increment in aerodynamic kinetic energy into an
increase in gravitational potential energy through a transient
increase in lift production, as described by the specific energy
flow

� V � @W
@t
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that is associated with gust soaring (equation (2.1)). Moreover,
turning downwind after encountering a sudden headwind
provides the opportunity to harvest further atmospheric
energy as wind speed decreases in any subsequent lull.

Opportunistic gust-soaring behaviours are most com-
monly observed in birds that specialize in gliding flight
close to the ground (figure 5), including crows [18,113], swal-
lows and martins [127] and various raptors [74]. Larger
species such as turkey vultures follow a characteristically con-
torted flight path when gliding at low altitudes. This is
thought to be linked to the exploitation of shear-induced tur-
bulence generated at the edge of forested areas—particularly
when weather conditions are unfavourable for the formation
of thermals [74]. A similar rocking flight pattern is displayed
by the bateleur eagle Terathopius ecaudatus [128], which has
also been suggested to make use of temporal variation in
the wind field to subsidize its flight costs [29]. Rocking
flight behaviours are typical of some other raptors that fly
close to the ground, including harriers Circus spp., so this
may be a more widespread strategy again. In any case, the
regularity of such flight behaviours makes them obvious can-
didates for application in gust-soaring sUAS. Even so, the
growing body of research on autonomous dynamic soaring
currently focuses on predictable wind gradients [112] rather
than unpredictable gusts (but see [3,129]).

4.3. Design considerations in dynamic soaring
4.3.1. Flight morphology
Equation (2.1) shows that whereas the specific energy flow due
to static soaring, gWu(s, t), depends only on the local updraft
strengthWu(s, t), the specific energy flow due to dynamic soar-
ing, −V · dW/dt, varies in proportion to airspeed V ¼ kVk.
Hence, whereas a bird that is transiting an updraft may benefit
from reducing its airspeed in order tomaximize its total gain in
potential energy [29], a bird that is transiting a gust or shear
layer will obtain no such benefit. On the contrary, for a given
rate of change in wind speed dW/dt, the rate at which
energy is gained through dynamic soaring increases with
airspeed V. Furthermore, because dynamic soaring can only
subsidize a significant proportion of a bird’s flight costs
under windy conditions, a high airspeed may be necessary
simply to enable control over the bird’s flight track. It follows
that while the same principles of efficient aerodynamic
design apply in both static and dynamic soaring, always
favouring wings of high aspect ratio, higher wing-loadings
may be expected in birds that specialize in dynamic soaring,
favouring narrower wings at a given mass. This is broadly
the pattern that is observed when comparing obligate land-
soaring and sea-soaring birds [34], and in some species, the
flight behaviour of the sex with the higher wing-loading is
more strongly influenced by wind conditions favourable for
dynamic soaring [130].

The mechanisms by which birds tolerate gusts depend on
sensing flow disturbances and responding appropriately [16],
or mitigating gusts by having a flexible, morphing airframe of
appropriate geometry [17–20]. Birds that use gust or gradient
soaring to loiter close to the ground tend to have very low
wing-loading. This may relate to their need to be highly man-
oeuvrable to respond quickly to unpredictable turbulence in
a structured environment. Some of these species also display
strong wing dihedral, which is typical of turkey vultures [74]
and harriers, whose characteristic rocking flight may be
promoted by the high static roll stability that their strong
wing dihedral provides [131,132] (figure 1d ). High static stab-
ility may also be important in aligning a bird’s flight into a
gust. Domestic pigeons gliding in urban environments also
make extensive use of wing dihedral—presumably for similar
reasons. Other species such as swallows Hirundo spp. make
active use of a forked tail to control turning flight
manoeuvres associated with rapid altitude gain [127].
Indeed, several species that apparently specialize in gust
soaring, including the red kite Milvus milvus and swallow-
tailed kite Elanoides forficatus (figure 1e), also possess promi-
nently forked tails which they twist and spread for control.
4.3.2. Sensory systems
Although birds that rely on dynamic soaring may use prior
knowledge to optimize where and how they fly [133], har-
vesting atmospheric energy from spatio-temporal gradients
requires an ability to sense wind direction, which in turn
requires airflow sensing to be combined with an inertial or
visual sense of progression relative to the ground. Many of
the sensing mechanisms that have already been mentioned
for updraft detection, including inertial sensing, flow sensing
and proprioception (figure 3), appear suitable for detecting
wind gradients. In addition, petrels and albatrosses are
reported to possess a specialized organ for detecting changes
in airspeed, in the form of tubular nostrils hypothesized to
function as Pitot-static tubes [105,134]. This may be a key
adaptation for gradient soaring, as these are the only families
of birds that routinely use this mode of flight, and the only
families of birds to possess such a structure. Any such
sense of airflow also needs to be referenced to an inertial
frame of reference to determine wind direction. This may
be achieved visually, as gulls flying low over water have
been found to regulate translational optic flow (i.e. the appar-
ent relative motion of the surface as they progress over it) in a
manner that would allow them to control their altitude
coupled to their groundspeed [96]. A view of the horizon pro-
vides information on bank angle [135], which may be useful
in controlling dynamic soaring trajectories at sea. It may also
be possible for birds to predict the location of spatial gradi-
ents based on the landscape features that generate them,
such as the crests of hills and waves (figure 4b,c). It therefore
seems reasonable to assume that birds combine visual, aero-
dynamic and inertial information to achieve dynamic
soaring.
5. State of the art in autonomous
atmospherically aware soaring

As we have discussed above, extracting useful mechanical
energy from the atmosphere does not in itself necessitate
any specific flight morphology, so even a hovering rotorcraft
could benefit from the lower power requirement associated
with flying in a steady updraft. Nevertheless, it is reasonable
to assume that fixed- or morphing-wing vehicles operating at
a similar range of aspect ratio and wing-loading to birds will
be best placed to capitalize upon the full range of soaring
opportunities that birds exploit. These metrics are not
always openly available for operational sUAS, but it is clear
from figure 6 that for a given mass, operational sUAS tend
to have a shorter wingspan than birds—especially those
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Figure 6. Scaling of soaring and non-soaring birds and operational sUAS. Within the sample of n = 507 birds shown, the n = 209 species recorded as soaring
( purple) tend to have a larger wingspan for a given body mass than the n = 298 species that have not been recorded as soaring (green). The n = 16 different
models of operational sUAS (orange) tend to have a smaller wingspan than birds of similar body mass, except at the very highest masses. See text for discussion.
Bird dataset collated from published sources [34]; sUAS dataset collated by Abdulghani Mohamed; see electronic supplementary material, Data.
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species that have been recorded as soaring. It is difficult to
draw strong conclusions regarding this difference in the
spans of birds and sUAS, because their speed regimes are
often different. It is likely, for example, that the feathered,
articulated, musculoskeletal wing structures of birds are
better able to cope with gusts and aeroelastic flutter than
the fixed-wing structures of conventional sUAS, permitting
a greater span at a given mass (and hence at a given wing-
loading, or a given airspeed). As an exception that illustrates
the rule, the Airbus AlbatrossONE demonstrator uses hinged
wings that deflect freely in gusts to enable a longer, higher
aspect ratio wing than would be possible with a conventional
fixed-wing design [136].

Other bioinspired wing designs may prove important to
realizing the full potential of autonomous soaring, given both
the need for gust tolerance and the likely benefits for soaring
of having longer wings than are deployed in current sUAS.
For example, the use ofwing dihedral for enhanced lateral stab-
ility versus a forked tail for enhanced lateral control (figure 1d,
e) appear to represent alternative—and opposing—strategies to
responding appropriately to turbulence (see §4.3.1 above). This
may be an interesting dichotomy to explore in the context of
sUAS designed to operate within the turbulent conditions
found close to the ground. For instance, simulation studies
have shown that building lateral instability into the airframe
of an autonomous vehicle can promote gust tolerance, with a
lower control demand than a vehicle with lateral stability
would experience under gusty conditions [137]. More gener-
ally, the use of avian-inspired morphing-wing designs could
enhance dynamic soaring manoeuvres [138], through the
enhanced gust tolerance [136,139] and flexible flight perform-
ance that morphing wings provide (electronic supplementary
material, Movies S1–S4). Both features are important to birds
for optimizing flight in the non-uniform and variable wind
fields that are essential to dynamic soaring [122,138]. In other
respects, autonomous soaring is fundamentally a problem in
guidance and control, which can in principle be solved using
novel sensors and algorithms on existing airframes. Imple-
menting autonomous soaring in a current or future flying
robot therefore hinges upon making it atmospherically aware.

Most opportunities for autonomous soaring can be
exploited through reactive flight control (e.g. turning to
remain in an updraft) or proactive path planning (e.g. flying
to the windward side of a structure) [27]. The specific rules
that birds follow to soar are largely unknown, but autonomous
static soaring has been successfully demonstrated from first
principles in sUAS resembling high-performance sailplanes
using reactive flight control. For example, inertial sensing of
an uncommanded roll motion indicates higher lift on the
ascending wing, typically resulting from the presence of an
updraft that can be exploited by rolling back towards that
side. It is plausible that new capabilities could be acquired in
a black-box fashion by using supervised machine-learning
approaches in which birds serve as expert demonstrators.
However, as the algorithmic aspects of technical soaring have
already been reviewed at length elsewhere [15–17], we have
chosen to focus our attention here upon identifying other
promising avenues for exploration at the interface of biology
and engineering.
5.1. Thermal soaring
Autonomous thermal soaring has been successfully demon-
strated using sUAS resembling high-performance sailplanes
[6–12,14,16], for which the main challenges are locating a ther-
mal, and then flying a trajectory that harvests its energy in an
efficientmanner [17]. Local thermal detection and autonomous
thermal centring has proven successful in sUAS flying between
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preprogrammed waypoints: having detected a thermal
directly, it is possible to fly an efficient trajectory using an expli-
cit thermal-centring algorithm that makes use of inertial
sensing of roll motion and acceleration as described above
[6–12,140–142]. Other attempts have involved algorithms that
plan a flight path by weighing near-field updraft velocity esti-
mates [143], or dynamically mapping thermal updrafts [16,17].
Black-box algorithms acquired through reinforcement learning
have also been reported [62,97]. These successful demon-
strations have all been achieved using conventional position,
attitude, acceleration and airspeed sensors. The key outstand-
ing challenge for autonomous thermal soaring is therefore
locating distant thermals. This requires integration of infor-
mation across a variety of sources—from long-range vision to
models of elevation and terrain—in addition to prior experi-
ence. As in flocking birds (figure 1g), this problem may be
most effectively solved by multiple atmospherically aware
agents serving as a distributed sensor network [144]. The
group soaring behaviours of flocking birds may therefore
offer insight into efficient behavioural algorithms for infor-
mation sharing when exploiting spatially complex energy
resources such as thermals [87–90,144]. For example, in
addition tomerely enabling detection of a thermal, observation
of themovements of other individuals can provide information
on its size, strength and drift speed. It may be possible to infer
the use of such information by observing the decisions that
birds take when choosing when and where to enter or depart
an occupied thermal, particularly in cases where there may
be more than one thermal to choose between. Likewise,
sUAS could benefit from using visual observations of soaring
birds to identify, locate and classify thermal updrafts.
5.2. Orographic soaring
Radio-controlled glider pilots routinely fly in orographic
updrafts, but autonomous orographic soaring is an emerging
research area, with only a few flight trials to prove its feasibility
[50,145]. Several recent studies modelling the flows around
medium-rise buildings have concluded that atmospheric
energy extraction is possible under stable atmospheric con-
ditions [50–52,145–149]. Other features that generate updrafts
adequate for soaring with model aircraft, and hence with
sUAS, include hedges, tree lines andwalls. Orographic soaring
could therefore be useful in low-altitude operations in complex
urban environments, which are rich with updraft-generating
obstacles, andmight also be useful for traversing long distances
at very low altitudes to remain below radar. On the other
hand, in adversarial scenarios such as urban warfare, there
may be a trade-off between the energetic benefits of soaring
in orographic updrafts, and the resulting predictability of the
agent’s behaviour.

For reactive flight control of a single sUAS, conventional
inertial and airspeed sensors can be used to detect updrafts
[70], but bird-inspired airflow sensing using sensors distribu-
ted across the wing [150–152] or mounted to sense upstream
flow effects [124,125] could also enhance updraft detection
and tracking. However, travelling between static updrafts is
challenging in urban environments owing to their structural
complexity, the presence of moving obstacles and the occur-
rence of large gusts [145]. There is therefore likely to be a
trade-off between the energetic benefits of soaring in oro-
graphic updrafts in cluttered environments, and the risk of a
collision. Past experience can also assist prediction of updraft
locations using real-time mapping [153] or prior modelling
[50,145,149] of thewind field. Observations of where birds pos-
ition themselves when flying through urban environments [22]
could therefore be used by sUAS to provide real-time feedback
on updraft locations and could also be used offline as expert
demonstrations for supervised learning of path-planning
algorithms. Moreover, flying robots could use swarm-level
communication to enhance their collective search for updrafts
in urban settings without the constraint of having to maintain
line-of-sight as birds must do when observing each other.
5.3. Gradient soaring
Implementing autonomous dynamic soaring is made challen-
ging by the difficulty of detecting favourable wind conditions
in an inherently complex flow field, and by the precise flight
manoeuvres required for energy harvesting. Simulation studies
have shown that energy-neutral trajectories are possible for
sUAS flying in the thick shear layer found close to the
Earth’s surface and across the thin shear layers behind ridge
tops [154], but the precise manoeuvres that these require are
made challenging by turbulent conditions [155]. Gradient soar-
ing may involve either closed or open-circuit flight trajectories
[15,138,156,157], but both require relatively large spaces to
manoeuvre. Closed-circuit flights have been achieved using
radio-controlled recreational models [158] and more recently
by autonomous vehicles [159]. These exploit the shear layer
formed over a spine-backed ridgewhere the flow up the wind-
ward side of the hill meets the rotor flowing up the leeward
side of the hill (figure 4c). Energy is gained in a substantial
lump when encountering the prevailing wind at the transition
across the shear layer. However, wing flutter is a significant
issue during the associated transition from a strong tailwind
to a strong headwind. The aerodynamic loads can be several
times those due to gravity, which requires an airframe capable
of bearing these high stresses within its weight limit. In the
light of these constraints, morphing-wing designs analogous
to those of birds have been suggested as a solution for opti-
mized energy extraction [15,138]. Open circuits are ideal for
long-distance travel, but the literature describing these is cur-
rently confined to simulation studies [15,114,160,161]. Real-
world implementation of open circuits is currently constrained
by inadequate sensormeasurements, limited computation, and
the challenge of estimating a dynamic wind field, but would
enable atmospherically aware sUAS to progress along a line
of buildings, hedge line, or waves in a maritime setting,
while extracting energy to stay aloft.
5.4. Gust soaring
Autonomous gust soaring is even more challenging given
the randomness and short timescales of atmospheric
turbulence [162]. Controllers which enable energy to be
harvested from gusts have been demonstrated [129,163],
and conventional inertial and airspeed sensing and a barom-
eter were found to be sufficient for gust soaring given the
assumptions used in these modelling studies. There may
also be advantages to resolving the direction of the wind.
Flush air data systems, such as those inspired by albatross
nostrils [164], or multi-hole pressure probes [125,129] can pro-
vide both wind speed and direction which could enhance
gust-soaring performance. Some work has been done to
implement gust mitigation controllers on robotic aircraft
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[81,124], which will be important in minimizing attitude
perturbations during gust soaring.

5.5. Opportunities for atmospherically aware path
planning

Although energy-efficient atmospherically aware path plan-
ning has been considered in the context of extending
range or endurance [7,8,149,165–182], it has not, to our
knowledge, been implemented in realistic mission scenarios
or missions. The study that has come closest to modelling a
realistic scenario is described in a pair of papers modelling
a cooperative mission by multiple sUAS required to overfly
a specific point of interest at an airfield [174,175]. Numerous
controllers have been proposed and validated for auton-
omous thermal soaring [6–9,142,172,182–189], and a smaller
number of studies have proposed controllers for autonomous
shear soaring [13,119,190,191] and autonomous gust soaring
[163,183,184,191–194]. These existing controllers and control
architectures could already form the basis of a soaring-capable
flight controller embedded in a realistic mission simulation
model. So too could proposed methods of estimating wind
field state for thermal soaring [195] and gust soaring
[196,197]. Unsurprisingly, simulation studies of small powered
sUAS confirm that thermal soaring could result in a pro-
nounced improvement in flight endurance under favourable
atmospheric conditions in open environments [12,198], but
similar benefits have also been demonstrated by a simulation
study of planned and opportunistic autonomous thermal soar-
ing in a model designed to simulate atmospheric conditions in
Northern Europe [172]. Furthermore, the flexible mixed-
strategy approach observed in birds such as gulls, kites and
crows, combining different kinds of dynamic and static soaring
has not yet been formally described, let alone implemented in
any flying robot (figure 7). Likewise, algorithms capable of
classifying a wide variety of atmospheric phenomena and
thereby enabling sUAS to select the appropriate harvesting
strategy from among a mixed set are yet to be explored.

5.6. Regenerative soaring
One key opportunity available to sUAS, but not to birds, is the
use of windmilling regenerative systems to charge onboard
electrical cells [199,200]. No analogue of the dynamo appears
in nature, just as there is no analogue of thewheel, so our engin-
eered systems should be able to surpass biological ones in
this respect. Closed-circuit soaring flight trajectories have also
been explored for ground-based electricity generation, where
controlled flight manoeuvres are conducted to gain kinetic
energy in order to spin a generator on the ground through a
tether [201]. This tethered flight concept has been demon-
strated successfully on small vehicles, with plans to build
larger ones capable of accessing larger wind gradients at
higher altitudes so as to produce megawatts of electricity
[202]. Another separate strand of research has successfully
combined autonomous thermal soaring with solar photovol-
taic technology to achieve regenerative flight durations in
excess of 26 h [203].
6. Conclusion
Birds can be seen soaring in many natural and anthropogenic
environments where future sUAS could usefully operate.
Nevertheless, whereas the thermal, orographic and gradient-
soaring behaviours of specialist soaring species have been
widely studied, surprisingly little is known of their mechan-
isms of proactive path planning and reactive flight control, or
of the sensors that they engage for these purposes. Moreover,
with only a few exceptions, the current literature does not
address the opportunistic gust-soaring behaviours and
other forms of high-frequency low-gain energy harvesting
that can be observed in a wide range of species using



Box 1. Glossary of terms.

term meaning
static soaring harvesting of atmospheric energy by flying in an updraft
dynamic soaring harvesting of atmospheric energy by flying in a spatially or temporally varying wind field
thermal soaring static soaring involving flight in a thermal updraft
orographic soaring static soaring involving flight in an orographic updraft
sweeping flight orographic soaring using the updraft created by the movement of a wave at sea
gradient soaring dynamic soaring involving flight in a spatially varying wind
gust soaring dynamic soaring involving flight in a temporally varying wind
regenerative soaring soaring of a powered vehicle with harvested atmospheric energy used to recharge a battery
updraft a rising mass of air
thermal an updraft driven by the buoyancy of a mass of air warmer than the surrounding air
thermal street a line of thermals created by downwind convection of thermals from their point of origin
atmospheric boundary layer an air mass whose motion is slowed by friction with the Earth’s surface
wind shear a spatial wind gradient including that occurring in the atmospheric boundary layer
ground effect the reduction in aerodynamic drag associated with flight just above the Earth’s surface
sUAS small uncrewed air system (or systems)
wing-loading the ratio of mass to wing area
aspect ratio the ratio of wing span to wing mean chord (i.e. wing span squared divided by wing area)
sink rate a flyer’s rate of descent with respect to the surrounding air mass
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flap-gliding flight in turbulent air. Even so, birds offer many
examples confirming that soaring is possible in a far wider
range of environments and conditions than are currently
accessible to, let alone exploited, by current sUAS. If there
is a useful source of atmospheric energy to exploit, birds
are likely to have exploited it, so simply observing where
and when they choose to fly offers a good source of inspi-
ration for the kinds of strategy that future sUAS might
mimic. This throws up some genuine surprises, including
the maritime thermals exploited nocturnally by frigate
birds, or the flared methane vents exploited nocturnally by
turkey vultures at landfill sites. It also reveals some more
obvious—but still unexploited—opportunities, like surfing
gusts on windy days, soaring the updraft on a ship or other
maritime structure, or sweeping close to the sea’s surface
on the updraft of a long wave. Beyond the scope of this
review, the study of other flying animals such as bats and
insects is relevant to identifying further opportunities for
atmospheric energy harvesting, particularly under nocturnal
conditions [204], and similar opportunities for soaring
can exist within aquatic environments, as demonstrated by
swimming sharks’ use of tidal updrafts [205].

Exploiting the many transient opportunities that birds
exploit, whether through static or dynamic soaring, may
require the development of sUAS possessing comparable
gust tolerance to birds, which could in turn necessitate the
use of flexible, morphing-wing designs. In other respects,
the energetics equations show that no uniquely specialized
flight morphology is needed to extract useful energy from
the atmosphere (see equation (2.1)). What is needed is
rather to be flying in the right place, at the right time, with
the right velocity and orientation. This in turn explains why
birds which do not share the specialized soaring flight
morphology of albatrosses and vultures can still soar oppor-
tunistically where the potential to do so exists. This provides
assurance that powered aircraft, which may not look like
high-performance sailplanes, can still benefit from soaring
energy gains. Just as a bird can obtain gravitational potential
energy in a thermal while flapping, even a multi-rotor can
gain harvest atmospheric energy through static soaring.
Hence, while there is obvious scope for highly specialized
sUAS that soar the oceans like albatrosses, or which make
persistent use of thermals like vultures, the greatest potential
may lie in drones that make flexible use of local updrafts and
spatio-temporal wind gradients (figure 7). New research on
the soaring strategies of birds, particularly concerning the
mechanisms of sensing and individual and collective behav-
iour that they use to implement these, has much to offer
current and future flying robots.
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