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Reinforcement Learning to Control Lift Coefficient Using
Distributed Sensors on a Wind Tunnel Model

A. Guerra-Langan∗, S. Araujo-Estrada†, and S. Windsor‡
Department of Aerospace Engineering, University of Bristol, Bristol, United Kingdom

Arrays of sensors distributed on the wing of fixed-wing vehicles can provide information
not directly available to conventional sensor suites. These arrays of sensors have the potential
to improve flight control and overall flight performance of small fixed-wing uninhabited
aerial vehicles (UAVs). This work investigated the feasibility of estimating and controlling
aerodynamic coefficients using the experimental readings of distributed pressure and strain
sensors across a wing. The study was performed on a one degree-of-freedom model about
pitch of a fixed-wing platform instrumented with the distributed sensing system. A series
of reinforcement learning (RL) agents were trained in simulation for lift coefficient control,
then validated in wind tunnel experiments. The performance of RL-based controllers with
different sets of inputs in the observation space were compared with each other and with that
of a manually tuned PID controller. Results showed that hybrid RL agents that used both
distributed sensing data and conventional sensors performed best across the different tests.

I. Introduction
Small uninhabited aerial vehicles (SUAVs) are light and agile, and as such, they are characterised by low Reynolds

number and low flight speed [1]. These characteristics make them suitable for operations in the atmospheric boundary
layer (ABL) [2–5], but they also make them particularly susceptible to the effect of unsteady aerodynamic forces. These
are of special interest when trying to respond to gusts and turbulence, avoid obstacles or perform rapid manoeuvres [6].
A potential method for improving flight control in these types of conditions is by directly controlling the aerodynamic
coefficients during flight. This approach could also provide a means of enlarging the safe operational envelope and
flight efficiency of SUAVs. To achieve this we propose the use of two bio-inspired concepts: artificial neural networks
following a reinforcement learning (RL) approach, and distributed sensing.

The control of lift coefficient at low Reynolds numbers has been developed in recent years with the aim of reducing
the impact of gusts on SUAVs [6, 7]. These works rely on aerodynamic models and theories to get an estimation of lift
force and lift coefficient, and their relationship with pitch rate to design lift coefficient controllers for gust-rejection. The
simulation studies were performed with a flat plate, which gave promising results. However, when tested in open loop in
a towing tank [8] with a known gust, the performance deteriorated. This was attributed to the model not capturing key
flow features of the gust recovery region.

In nature, it is thought that the ability of flying animals to sense the distribution of air flow and related forces over
their wings may contribute to their robust and efficient flight. Being able to sense these distributions over their flexible
articulated wings offers the potential for animals to adjust their wing shape or motion to respond to disturbances, improve
efficiency or enhance manoeuvrability [9–16]. Research suggests that the use of bio-inspired distributed sensor systems
over the wing of small and micro UAVs could offer similar benefits for artificial flyers [17–20]. However, the integration
of many parallel channels of airflow information into conventional flight control architectures is not straightforward.
The arrays do not give direct measurements of the dynamic state like a conventional sensor. The exploitation of novel
sensors on UAVs requires either the design of new controllers which can directly use the raw information coming from
the sensor system (e.g. [21], [22]), or the design of new processing algorithms that translate the sensor signals into
parameters that will feed conventional (e.g. [23, 24]) or alternative controllers (e.g. [21, 25]).

The information provided by distributed pressure and strain sensor arrays has been used to better understand the
relationship between the dynamic states and loads of an SUAV and the airflow around it. For instance, two different
UAV platforms were tested in the wind tunnel and free flight, one to measure the force (strain) and the other to measure
the flow (pressure) [19]. Data showed a linear relation between U and both types of sensors up to stall conditions and an
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increase in the variance for higher U. In addition, the outputs of the sensors showed that both controlled and natural
gusts can be detected and that properties which are not encoded by the inertial measurement unit (IMU) can be measured
or calculated. Following this, a wing model was instrumented with both distributed pressure and strain sensors. The
aerodynamic loads and states were estimated using artificial neural networks (ANNs) [20]. Measurements captured
detachment of the flow and non-linear behaviours such as hysteresis and rate dependent effects. This sensing array was
then used for angle of attack control of a 1 degree-of-freedom (DOF) platform in wind tunnel experiments [21], and for
airspeed control of a 3 DOF simulation model [22] by means of ANN-based controllers. The prior use of distributed
pressure and strain sensing arrays for aerodynamic loads estimation and application on end-to-end control sheds light on
the potential use of this sensing array to control aerodynamic coefficients during flight.

The work in [22] saw some of the benefits and limitations of using a supervised learning approach. Within machine
learning, supervised learning is a subcategory defined by its use of labelled datasets to train algorithms to classify
or predict outcomes accurately. The results in [22] saw that ANNs were capable of both dealing with the size and
high-complexity of the distributed sensing system and of adapting to different situations not included in their training
set, especially when using the full sensor suite. One of the limitations of this approach was that the controllers aimed to
match the performance of the training set instead of learning to optimise or minimise the error between the desired and
the actual parameter. ANNs have been used in aviation for limited applications which include replacing components of
conventional flight control systems [26] such as gains [27], or as look-up tables for aircraft collision avoidance algorithms
[28]. Limited research has been conducted on the use and safe application of machine learning for flight control, but
some studies have used ANNs in conjunction with adaptive control [29], for gust detection and load mitigation on
wind turbines [30], for stabilisation and trajectory control of a hexacopter [31], a flapping wing [32], or a model-free
simulation of a UAV [33], and to attain robust non-linear control for active guidance of a finless rocket [34]. Most of
these studies trained the ANNs following a supervised learning approach with their performance tested in simulation,
rather than with physical platforms.

One of the alternative approaches to supervised learning is reinforcement learning (RL), which is a computational
approach to learning from interaction, where trial-and-error search and delayed reward take an important role [35]. In
this case, the neural networks are trained based on the experience of an agent interacting with the environment. RL
algorithms model and learn complex nonlinear relationships between variables, deal with large observation spaces,
learn from the environment to achieve specific goals, and optimise and generalise the solution with a trade-off between
exploration and exploitation [35]. This approach has mostly been used in simulated environments and video-games,
and less so on real-world platforms. However, RL has been used in SUAV flight control for a series of applications.
An autonomous helicopter learnt to follow a series of manoeuvres using the Pegasus RL algorithm [36], with the
pre-built learning framework being able to adapt to changes in the dynamics of the vehicle. A PID controller for
multirotor attitude control was compared to three different RL agents in [37]. In this work, Deep Deterministic Gradient
Policy (DDGP), Trust Region Policy Optimisation (TRPO) and Proximal Policy Optimisation (PPO), were trained
and compared in simulation and the PPO algorithm showed superior performance overall, including outperforming
a conventional controller. Fixed-wing UAVs have also seen RL algorithms used for control, showing high levels of
performance for attitude control in simulation [38], for angle of attack control in wind tunnel tests [25], or for perched
landing [39–41]. A Q-learning RL algorithm was used to attain a policy based agent to find the best flight profile for
perching manoeuvre in open loop flight tests [39]. Flight tests of the same platform in closed-loop configuration [40]
followed on from this, where a Deep Q-Network (DQN) algorithm controlled the aircraft during flight but suffered
from the reality gap between the simulation environment it had learnt from and flight tests. More recently, flight tests
showed a reduced reality gap when an improved version of this controller was developed using PPO [41]. The PPO
algorithm [42] has become the OpenAI’s algorithm of choice and one of the most commonly used due to its ease of use
and good performance. This algorithm provides the data efficiency and reliable performance features typical of TRPO
whilst being simpler and easier to implement [43].

The aim of the work presented here was to estimate aerodynamic coefficients by means of distributed pressure and
strain sensors over the wing of a fixed-wing SUAV and to directly control these using an RL based approach. An ANN
aerodynamic coefficients estimator is presented, which was trained to estimate lift and drag coefficient using pressure
and strain sensor readings together with pitch rate. These coefficients were then used to train a series of RL agents
to control a 1 DOF platform in simulation to track the estimated lift coefficient (�̂!). The agents were trained using
the PPO algorithm with different observation and action spaces, and the best performing controllers then tested in the
wind tunnel (WT) to validate their simulation performance and to assess their applicability on a physical platform. The
�̂! root-mean-square-error (RMSE) was calculated and used to compare the performance of the different agents for
this task. A PID controller was also manually tuned in the wind tunnel for �̂! control with the aim of comparing the
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behaviour of linear and nonlinear controllers for this task. If applied on an SUAV, the controllers proposed in this work
could potentially increase the manoeuvrability of the vehicle, enlarge the safe operational envelope and help with gust
alleviation.

The methods used in this work are described in detail in Section II. The performance of the aerodynamic coefficients
estimator is presented and discussed in Section III, and the performance of the �̂! controllers in wind tunnel experiments
is shown in Section IV. The benefits and limitations of the different controllers are discussed in Section V, together with
the contributions to the field and how other work could build on the methods and results presented in this paper. Finally,
conclusions are drawn in Section VI.

II. Methods
The first stage of this study was to wind tunnel test an instrumented 1 DOF experimental platform to record

distributed sensor readings and aerodynamic loads over a range of conditions. This dataset was then used to build a lift
and drag coefficient (�! , ��) estimator, and was integrated into an empirical flight dynamics model with the aim of
replicating the behaviour of the physical platform in simulation. The simulation environment was used to train a series
of reinforcement learning agents to control lift coefficient. These agents were tested on the physical platform in wind
tunnel experiments to assess their performance. This section describes the approach in more detail.

A. Wind Tunnel Dataset
The dataset used to build the empirical flight dynamics model for simulation was gathered from wind tunnel tests.

This was done through a series of experiments which were carried out in the University of Bristols 2.13m × 1.52m
(7 ft × 5 ft) low speed wind tunnel. These tests were performed using a semi-span wing of a WOT 4 Foam-E Mk2+
(Ripmax, Enfield, UK) radio control aircraft, instrumented with an array of 30 pressure and 4 strain sensors as per
Fig. 1, which was the same wing model used in [20–22]. The wing was mounted on a ply and balsa wood half-fuselage
built following the original outline design of the WOT 4 fuselage, with a larger tailplane for increased pitch control
authority. The model was equipped with an inertial measurement unit (IMU) (Pixhawk 1, 3DR) and a servo motor
(Hitec HS-5645MG) linked to the elevator. These together with an airspeed sensor on the wing were connected to
a micro-controller unit (PJRC, Teensy 3.6). The model was mounted to the wind tunnel wall, supported by a shaft
which allowed free motion around the pitch axis, or that could be driven by a large servo motor (Schneider Electric,
LXM32MD30M2 and BMH1401P01F2A). The aerodynamic loads were measured using a load cell (ATI Industrial
Automation, Miny 45) mounted between the wing support and the rig’s shaft. The maximum angle of attack (U) value
available given the size of the wind tunnel, the size of the fuselage and the position of the rig was approximately 29°.
The maximum and minimum effective elevator deflection (X4) available was ±40°.
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Fig. 1 Distributed sensing array: a) chord-wise (2) pressure array distribution taken from [20] and b) span-wise
(1) strain array distribution

Two sets of experiments were carried out in the wind tunnel where the sensor readings, the dynamic states and
the aerodynamic loads were recorded. First, servo driven tests where the aircraft model was moved to specific
angles of attack from −20° to 29°, repeated four times at airspeeds + = [8, 10, 12, 14, 16, 18, 20] m/s and pitch rates
@ = [1, 5, 10, 20, 30, 40, 50] °/s. The angle of attack in these tests was measured by the encoder in the large servo motor.
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The data gathered from these tests was used to build the empirical model and the aerodynamic coefficient estimator as
described in Section II.B. Second, elevator frequency sweeps were undertaken with the aircraft pitch being driven by
changes in the elevator deflection. The frequency sweeps ranged from 0.1Hz to 10.0Hz and were performed at each of
+ = [8, 10, 12, 14, 16, 18, 20] m/s. Note that the angle of attack in these tests was given by the pitch angle measured by
the IMU. The data gathered from these tests was used to derive a model of the pitching moment of the aircraft by means
of the Output Error Method [44]. The model and the corresponding parameters are given in Appendix A.

B. Simulation framework: Empirical model
A 1 DOF empirical model of the experimental platform was built in Python 3.6. The mathematical model for the

pitching moment of the experimental platform was derived from the frequency sweeps described above, and given by
Eqs. A.1 and A.2, and the coefficients in Table A.2 in the Appendix. Figure 2 shows a block diagram of the 1 DOF
empirical model used in simulation. The inputs to the controllers varied depending on the controller chosen in each test.

Fig. 2 Block diagram of the 1 DOF empirical model, with % representing the pressure sensor signals and ( the
strain sensor signals

The dataset gathered in Section II.A was included in the simulation framework by means of ANNs. These were used
to serve as sensor estimators in the simulation framework, and as �! and �� estimators in both simulation and WT
tests. All the ANNs were trained with the MLPRegressor function in the “Scikit-Learn v0.22.2.post1” package for
Python [45], using the C0=ℎ activation function for 1000 epochs with a maximum number of validation failures set to 50.
The inputs to the networks were normalised in [-1, 1]. The training and validation set used approximately 85% of the
wind tunnel dataset, while the remaining 15% was used to test the performance of the ANNs. This evaluation was done
with the “score” method of MLPRegressor, which returned the coefficient of determination ('2) of the prediction.

a) Pressure and Strain estimation
The relationship between the state parameters and the sensor outputs was obtained by curve fitting the data with
ANNs. A neural network was defined for each span-wise section of the wing, i.e., two for the 2 chord-wise
pressure sensor arrays and four for the 4 strain sensors used, giving a total of 6 ANN sensor estimators. The
details of the ANNs used in the estimators are given in Table 1.

b) Aerodynamic coefficients estimation
In this work the aerodynamic coefficients were estimated (�̂! and �̂�) using the pressure and strain sensor
information as inputs together with @ as was suggested in [20]. ANNs were used due to the size of the dataset
and its complexity. The lift and drag coefficients in the training set were calculated from the lift and drag forces
measured by the loadcell during the wind tunnel tests (Section II.A). Both �! and �� were estimated from a
single ANN (Table 1).
The servo-driven tests were carried out with all the control surfaces set to 0°. This meant that the distributed
pressure and strain sensor information was aligned with the aerodynamic loads for these specific conditions. An
assumption was made in the simulation model that the effect of the elevator on �! and �� for this platform was
negligible.

The '2 values for the testing set presented in Table 1 were all close to 1.0 indicating the ANNs could fit the data
well. The sensor estimators were used to simulate the sensor readings over the wing of the vehicle at any given state,
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Table 1 Summary of ANN estimators (pressure, strain and aerodynamic coefficients)

Estimated parameters Inputs Neurons in hidden layers Number of outputs Testing '2

Pressure A (PA)

States
[U, + , @]

16-16 15
0.989

Pressure B (PB) 0.991
Strain A (SA)

8-16-8 1

0.996
Strain B (SB) 0.995
Strain C (SC) 0.993
Strain D (SD) 0.976
�̂! , �̂� [q, PA, PB, SA, SB, SC, SD] 16-32-16 2 0.986

to replicate the information available on the physical platform. The aerodynamic coefficient estimator was designed
to estimate these parameters given the sensor readings, with the aim of being applicable in both simulation and wind
tunnel testing or future outdoor flight experiments. Figure 3 shows that the estimated �! and �� correlates well with
the measured values, calculated from the loadcell data. The errors in the estimation are presented in Table 2, where the
RMSE value and the RMSE value relative to the measurement range (%MR) is shown in brackets for the testing dataset.
The measurement range was obtained from the full original dataset, by getting the maximum and minimum measured
values. The data presented in Table 2 indicates that overall, the aerodynamic coefficients can be estimated with an error
of 0.73%MR for �! and 2.78%MR for �� , showing a similar performance at high and low angles of attack.
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Fig. 3 Real against predicted a) �! , and b) �� , for the testing set

Table 2 RMSE and %MR values for estimated �! and �� from the testing dataset

Variable Measurement range Overall RSME (%MR) RSME (%MR) U > 11°

�! 3.29 0.024 (0.73) 0.025 (0.76)
�� 1.26 0.035 (2.78) 0.035 (2.78)

C. Reinforcement Learning Controller
The work presented aimed to control the lift coefficient using a policy-based reinforcement learning approach.

Generally, RL methods depend on the interaction between an agent capable of taking decisions and its environment.
In this way, at time C, the agent receives a state or observation BC after interacting with the environment, and uses this
information to compute the action it will perform next, 0C . The learning occurs with the help of the reward function,
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which gives a measure of how good the action was at that time, AC = '(BC , 0C ), while it transitions into the next state,
BC+1. The end goal is for the agent to maximise its return, '(g) which is the cumulative reward over a trajectory. This
trajectory is defined as the sequence of states B8 , actions 08 and rewards A8 taken (g = B0, 00, A1, B1, 01, A2, ...).

The proximal policy optimisation (PPO) was the RL algorithm of choice in this study. This is a policy-gradient
method proposed by Schulman et al. [42] which optimises a surrogate objective function using a stochastic gradient
ascent. Stochastic policy gradient methods work by constructing an objective function and iteratively estimating its
derivative with respect to policy parameters by taking small steps. PPO comes as an improvement to the trust region
policy optimisation (TRPO), by modifying the surrogate objective function and constraining the size of the update steps
with a clipped objective function.

The surrogate objective proposed by PPO is:

��!� % (Z) = ÊC
[
<8=(EC (Z) �̂C , 2;8?(EC (Z), 1 − n, 1 + n) �̂C )

]
(1)

EC (Z) =
cZ (0C |BC )
cZ>;3 (0C |BC )

(2)

where ÊC [...] is the expectation, �̂C is an estimator of the advantage function at timestep C, n is a hyperparameter, E(Z) is
the probability ratio between the updated policy and the current policy, and cZ is a stochastic policy parameterised by
Z . The 2;8? function clips the ratio to be no more than 1 + n and no less than 1 − n . This function discourages too
large updates, limiting the difference between cZ and cZ>;3 by including the probability ratio only when it makes the
objective worse.

The PPO2 algorithm provided by the “Stable Baselines 2.10.1” [43] package in Python was used to train the agents
presented in this work. This method combines the PPO algorithm described above with an actor-critic structure, which
at the same time combines value functions with explicit representation of the policy. This structure uses two separate
neural networks, one (actor) to select actions, and the other (critic) to evaluate them. The objective function in this case
needs to account for the learnt state-value function V(B) and an entropy term S to encourage sufficient exploration,

��!� %++ �+SC (Z) = ÊC
[
��!� %C (Z) − 21�+ �C (Z) + 22S[cZ ] (BC )

]
(3)

where 21 and 22 are coefficients, S denotes an entropy bonus, and �+ �C is a squared-error loss (VZ (BC ) − VC0A6C )2.

Overall, this algorithm attains the data efficiency and reliable performance features typical of TRPO whilst having
multiple agents, and being simpler and easier to implement.

D. Training approach
The PPO2 algorithm described above was used to train a series of agents in simulation to control the 1 DOF platform

with the aim of tracking a desired lift coefficient.
Fourteen different specifications were trialled during the training of the agents (i.e., 7 observation spaces × 2

actions spaces × 1 reward function). Each of these specifications were trained five times, with different seeds to ensure
generalisation. The neural networks were trained using the default settings of “MLPPolicy” provided by Stable-baselines,
which uses a fully-connected multi-layer perceptron (MLP) with two hidden layers of 64 neurons each with tanh
activation functions. The inputs to the controllers were normalised in [-1 1], and the output of all agents was the elevator
angle rate, which was chosen so that the full range of elevator deflection angles could be covered by a discrete action
space. Table 3 shows a summary of this, where %( was the full pressure and strain sensor suite, (C0C4B = [U,+, @, X4],
A was the reward function, �!3 was the desired �! , and ¤X4<0G was the maximum elevator deflection rate set to 120 °/s.
The reward function was empirically designed with the aim of minimising the error between the desired lift coefficient
and the estimate by producing negative rewards proportional to the absolute value of the error.

The pitching moment model derived from wind tunnel tests and used in the simulation framework depended on
airspeed as shown in Table A.2. Because of this, it was important that all agents included + directly or indirectly as an
input in their observation space as well as enough information to derive the aerodynamic coefficients. The full sensor
suite alone contained enough information about + , used for airspeed control in [22] and to estimate the aerodynamic
loads [20]. Agent 1 was trained using sensor information exclusively; agents 2-3 were trained with the full states of
the platform or a subset of the state; and agents 4-7 were hybrid versions that used different combinations of sensor

6



Table 3 Summary of trained agents

Agent ID
Input layer /

Observation space
Hidden
layer

Action space, °/s Reward function

1 %(

64-64

Discrete:
[±120,±50,±5, 0]

Continuous:
[−1, 1] × ¤X4<0G

A = −|�!3 − �̂! |

2 States
3 [U,+, @]
4 %( + States
5 �̂! ++
6 �̂! + %(
7 %( + @

information and states. In particular, agents 6-7 both contained the same information in different forms: PS and @, since
the aerodynamic coefficients were estimated using these parameters.

During the training process, each episode had a duration of 30 s with 600 timesteps, assuming a control rate of
20Hz. The wind speed was defined as a constant in each episode, randomly selected as an integer within the range of 8
to 20m/s. The initial U was within the range of -30 to 30°, the initial @ was within the range of -5 to 5 °/s and the initial
X4 was within the range of -40 to 40°. �!3 was defined by a “doublet” signal, shown in Fig. 4. In this case, the base
�!3 value was equal to the initial �̂! , the ramp time C2 was 0.5 s and the step amplitude (A) was randomly chosen as a
value within the range of 0.1 to <8=( |�!<8= (+) − �̂!8=8C |, |�!<0G (+) − �̂!8=8C |). Here, �!<8= (+) and �!<0G (+) were
the minimum and maximum �! values for @ = 1 °/s at the specified + given by the dataset used to build the empirical
model. In this way, the desired �! was never below or over the minimum and maximum possible values at the given
airspeed, respectively. In the doublet wave, �! was held at ±� for a duration of 10 s.

A

tc

Fig. 4 Doublet signal

The training process saw each agent trained five different times with different seeds in order to reduce the probability
of getting high or low training scores by chance. During the training, the algorithm checked the mean return of the
previous one hundred episodes every 1000 episodes, and the best agent based on this value was saved. The final agent
used per batch of five, was chosen based on the mean return obtained after running the simulation for 50 random
test cases. This gave a total of fourteen agents per control task, which was downsized to seven by selecting the best
performance based on observation space, not considering whether it used a discrete or continuous action space (Table B
in the Appendix). The reward during training is shown in Figure B.1 in the Appendix for the selected agents, and their
behaviour in simulation is described in Section IV.
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E. Experimental Approach
The controllers presented in this work were tested and validated in the University of Bristol’s 2.13m × 1.52m

(7 ft × 5 ft) low speed wind tunnel following the setup in Fig. 5. Here, the aerodynamic coefficients estimator was used
to get live estimations of �! given the readings of the distributed sensing system. The inputs to the controller varied
depending on the controller chosen in each test.

Fig. 5 Block diagram of the experimental 1 DOF platform in the wind tunnel setup

Seven agents, one per observation space, and a manually tuned PID �̂!-controller (gains in Table A.3) were used to
control the 1 DOF platform to track a �! doublet signal (Fig. 4). The base �! value was set to 0.2, the amplitude was
defined as ±0.5 and the duration at each section was of 10 s with C2 = 0.5 s. The total duration of each experiment was
of 42 s, and they were run at three different airspeeds, + = 10, 15, 18m/s, which were set to a constant value during
each test. The individual experiments were repeated five times in order to verify repeatability. The linear controller
was used as a baseline to which to compare the RL-based controllers. The aim of these experiments was to study the
application of the controllers on a physical platform for �! control in the linear region.

Following on the results of these tests, two of the best performing RL agents and the PID controller were tested at a
higher �! value. This �!3 was defined as the maximum �! at each tested + , which was taken from the wind tunnel
dataset in Section II.A (gathered in Table A.4). The tests were performed under two different conditions to study their
robustness and analyse their performance and limitations:

1) Baseline: The tests consisted on setting X4 = 0° for 5 s and then turning the controllers on for 35 s for a total
duration of 40 s per test.

2) Perturbation 1: As above, but in this case the aileron and flaps were deflected to 40° for 0.5 s after 5 s of control;
and for 10 s after 11 s.

These additional tests were aimed at investigating the performance of the controllers in the nonlinear region to set a
basis for future work.

III. Performance of the aerodynamic coefficients estimator
In this work, an ANN was used to estimate �! and �� given the readings of distributed sensor data together with

pitch rate, as described in Section II.B. The estimator was trained with servo-driven data, with all control surfaces set
to 0°. The effect of the elevator on �̂! and �̂� was assumed to be negligible.

Figure 6 shows the estimated aerodynamic coefficients against the real values, calculated from the load cell data.
The performance of the aerodynamic coefficients estimator was assessed by calculating the RMSE value between

the estimation and the calculated value from load cell readings. The computed RMSE values are given in Table 4 and
the RMSE relative to the measurement range (%MR) is shown in brackets. The measurement range was taken from the
original training set, as per Section II.B.

Table 4 RMSE and %MR values for estimated �! and �� in WT tests

Variable Measurement range Overall RMSE (%MR) RMSE (%MR) U > 11°

�! 3.29 0.063 (1.92) 0.109 (3.31)
�� 1.26 0.028 (2.22) 0.030 (2.34)
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Fig. 6 Comparison between estimated aerodynamic coefficients and calculated values from load cell data:
(a) �! and (b) ��

The RMSE values presented in Table 4 together with the data in Fig. 6 suggest that the estimators could be affected
by random errors, such as differences in barometric pressure between the servo-driven WT tests performed to attain the
training dataset and the validation tests presented in this work, or minor differences in the setup between the two sets of
WT tests (i.e., rig or platform configuration). In addition, systematic errors were also present, resulting in over-estimates
of the parameters due to extrapolation, which occurs when the estimator encounters states that were not given in the
training set. The results in Table 4 suggest that the aerodynamic coefficients can be estimated with an overall RMSE of
up to 2.22% of the measurement range. The data in Table 4 also shows the RMSE value specific to high angles of
attack, U > 11°, presenting an error of 3.31%MR for �! and 2.34%MR for �� . This is of special interest for �! control
around stall.

The %MR errors seen for �! estimations in the RL wind tunnel tests were greater than those seen in Section II.B for
the testing set (0.73%MR), and than those seen in [20] for lift load estimation (0.77%MR). The testing sets used to
attain these values in Section II.B and [20] were gathered in the same set of wind tunnel tests as the training dataset, and
following the same approach. This means that even though the datasets used for training and testing were different, the
rig configuration and set-up remained the same and the testing dataset was uniformly distributed across the full range of
U. The work presented in this paper was collected in a different set of tests where differences in rig and set-up could
have had an effect on the results, and where the data collected was dependent on the control tests performed.

Further improvements in the estimation of the aerodynamic coefficients could be achieved by studying a greater
variety of ANN architectures, by investigating the use of additional information as inputs to the estimator, studying the
sensor layout following the approach in [22] for + control, and by increasing the training dataset to include perturbed
state of the flow.

IV. Performance of the controllers
The seven RL agents presented in Section II.D were tested in wind tunnel experiments together with a manually

tuned PID �̂!-controller following the approach in Section II.E. In the results displayed in this section, the agents were
clustered in different colours based on the inputs to their observation space. Agent 1 with “%( only” was purple, agents
2-3 with “states only” were in red tones, 4-5 hybrid versions with different state combinations in blue tones, and 6-7
hybrid versions with %( + @ given in different forms in green tones.

The time-histories for the repeat with median RMSE value among the five repetitive tests for each case in the wind
tunnel tests are presented in Fig. 7a for + = 15m/s. The same tests in simulation are presented in parallel in Fig. 7b for
comparison. At the start, the elevator was set to 0° for all tests, and the controllers were switched on at C = 2.5 s. In
addition, a summary of the overall performance of all the controllers is presented in Fig. 8, by the mean �̂! RMSE
value across repeats at different airspeeds for WT and simulation tests.
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Overall, the oscillating behaviour was mostly decreased, and the overshoot and overdamping characteristics were
increased in the wind tunnel when compared to simulation. This change in behaviour was likely to be a result of minor
differences in the dynamics of the simulation model and the physical platform at the time of the validation tests, such as
additional friction in the pitch axis caused by setup inconsistencies.

The agents that performed best were the hybrid versions with %( + @ information only, given in different forms (6-7).
These agents followed the desired signal closely, but presented over and undershoot in the transition phases caused by
rapid changes in elevator command as they also did in simulation to a smaller degree. Agent 5 also presented good
performance, with low �̂! RMSE values overall, but presented oscillating behaviour in some cases.

Agents 1-4 presented the greatest differences between the simulated performance and the wind tunnel tests. The
poor performance of Agent 1 in the wind tunnel was attributed to poor convergence during the training. This did not
affect its performance when tested in the simulation environment it had learnt from, but given the noise of the sensor
readings in WT experiments, Agent 1 resulted in a less robust controller. Agents 2-4 were the only controllers that
contained U in their observation space, which was interesting since these agents went to very similar mean U when
comparing the wind tunnel results to simulation, and in comparison to the remaining controllers. Conversely, agents 5-7
all presented differences in U achieved when comparing the WT results to those in simulation.

These findings suggested that there was a reality gap between the simulation model and the physical platform
which affected the angle of attack. Further study saw an offset between the angle of attack used in the servo-driven
dataset described in Section II.A (measured by the servo encoder) and the angle of attack measurement used to build
the mathematical pitching moment model and to control the agents in the WT (measured as pitch angle by the IMU).
The offset between the measured angles depended on the different test conditions: U, + , @, and was more significant
at higher angles of attack. This error in the measurement was attributed to play in the model to rig joint, flexibility
of the rig and model, and zeroing of the encoder and IMU angle reference. This meant that the sensor data and
the aerodynamic coefficients were misaligned with angle of attack in the simulation model. As a result, the agents
which included U in their observation space exhibited different behaviour in the wind tunnel, when the flow conditions
at a given U did not match those seen in simulation. The remaining controllers were not directly affected by this
reality gap. The relationship between the elevator deflection and the subsequent angle of attack given by the derived
pitching moment model was roughly linear, which meant that the effect of the elevator rate on the angle of attack of the
platform remained roughly constant throughout the full range of U. In consequence, the simulation model could still
see the flow conditions typical of the nonlinear region, but it occurred at a different U than in the wind tunnel. This
error in measured U had little impact on the behaviour of those agents that did not use U in their observation space (1, 5-7).

The results presented in Fig. 7a serve as an example of the behaviour of the RL and PID controllers when performing
in the linear region. The performance of the RL controllers depended on their observation space, with agents 5-7
performing best overall. The PID controller presented a slow response to changes but was capable of achieving the
desired steady state value.

Following on the results of these tests, two of the best performing RL agents (5, 7) and the PID controller were tested
at a higher �! value. The �!3 was defined as the maximum �! at each tested + , gathered in Table A.4 as described in
Section II.E. In this case, the experimental tests were performed with and without perturbation in aircraft configuration
(i.e., aileron and flap deflection) to assess the robustness of the controllers.

The time histories of the repeat that produced median �̂! RMSE value among the repetitive tests at + = 15m/s are
presented in Figs. 9a and 9b for both cases. A summary of the performance of these controllers across the different
repeats at this airspeed is presented in Fig. 9c. All controllers reacted to the change in the reference demand, but
presented overshoot. The magnitude of the PID overshoot was higher than for agents 5 and 7, and decreased rapidly
with a saturated elevator. The PID controller was unable to drive the platform to a desired solution, with �̂! RMSE of
about 0.2 and a high mean �̂� , indicative of stall.

Both agents showed good performance, capable of reacting to perturbations, though agent 5 presented the best
performance overall with low oscillations in its response to perturbations. This was probably due to the quantity and
quality of information in the observation space. This agent had just enough information to solve the problem from
a dynamics and aerodynamics point of view: + , �̂! and the reference value. Agent 7 had to extract the information
corresponding to + and �! from its inputs, and it presented a less robust performance to perturbations due to the noise
in the sensor signals given by the perturbations on the state of the flow around the wing. Nevertheless, the estimated �!
during the tests was mostly under the desired maximum value, and the angles of attack were kept low which meant that
the controller presented a conservative solution as opposed to that of the PID controller.
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V. Discussion
In this work, an empirical 1 DOF flight dynamics model of an aircraft on a pitching rig was built in simulation to

replicate the behaviour of the physical platform in the wind tunnel. The simulation model included the information
given by an array of distributed pressure and strain sensor readings on the wing. The distributed sensor information was
then used to build a �! and �� estimator, and to train a series of RL-based controllers to track �! in simulation. Both
the estimator and the agents were tested in WT experiments to validate their performance. All agents together with a
manually tuned PID controller tracked a doublet wave demand in �! , with a maximum �!3 = 0.7. These experiments
served as a means of testing the performance of the controllers in the linear region. Two of the best performing agents
and the PID controller were also tested in the nonlinear region, at higher �! values as per Table A.4.

A series of discrepancies were visible when comparing the performance of the agents in simulation to their behaviour
on the physical platform. In simulation, all agents exhibited similar performance with low �̂! RMSE values, which was
not surprising given that they were tested in the same simulation environment they were trained on. When tested on
the physical platform the simulation model was based on, the performance and behaviour of the agents changed. The
differences between the physical and simulated behaviour are likely to be a result of a reality gap between the simulated
model and the physical platform, rather than errors in the estimation of the aerodynamic coefficients, as relatively low
error values are presented in Section III.

It is important to highlight that the model used for training in this work did not account for noise or uncertainty in
the measurements. The ANNs used to estimate both the pressure and strain data, and the aerodynamic coefficients
were trained with a noisy dataset, and they found optimal solutions that gave minimal error when tested on a separate
testing set. The mathematical pitching moment equation was derived from a noisy dataset, but no further noise was
included and the calculated @ and U were directly applied in the model. In the same way, + was set as a constant value
for each of the tests in the simulated environment whilst the + used in the wind tunnel experiments was measured with a
pitot tube instrumented on the wing. The addition of noise and uncertainty on the simulation model could improve the
performance of the controllers on the physical platform, helping bridge the reality gap in future work [41, 46, 47].

The readings of pressure and strain sensors alone (agent 1) were enough to control the 1 DOF platform to track �̂!
in simulation but its performance was deteriorated in the wind tunnel. As was concluded in [22] for + control, the
performance of the machine learning controller was enhanced with additional information in the observation space. In
this case, this improvement was achieved by combining the distributed sensor readings with + or @. It is interesting
to highlight the fact that %( + @ was also the information provided to the aerodynamic coefficients estimator in this
work. The combination of airflow sensors with IMU and DGPS readings has been suggested in the literature [48, 49] as
a means of further exploiting and improving the capabilities of airflow information. The results in this work are in
accordance with this.

The combination of %( with @ and + as inputs to the observation space led the agents to adapt to the state of the
flow instead of relying on specific state values to achieve the demanded �! . This resulted in some agents (5-7) being
particularly robust whilst the agents that contained both U and X4 in their observation space (2-4), presented rigid
behaviours to changes in the model. Their lack of robustness was mainly due to a rigid policy that was highly dependant
on the angle of attack or the elevator deflection. This is highlighted in the time histories in Fig. 7. Agents 2-3 strongly
relied on both U and X4 to achieve the optimal solution, even if the state of the flow at the given dynamic state was
undesirable. This meant that the “states only” agents did not perform as well as those agents that contained the sensor
information in some form.

Agent 4, which contained both the distributed sensor and the states information as inputs made use of both sources of
information. At lower angles of attack, the agent was capable of tracking �̂! with similar performance to the remaining
agents and to simulation, but its performance deteriorated at higher U values. This was in accordance to what was seen
in the reality gap study, where the disparity between the two angle of attack measurements was larger at higher U values.

The U reality gap discussed above could have been avoided by either training the sensor estimators with the IMU
readings, by using a transformation equation that described the relationship between both U measurements, or by using
a multi-hole probe to get U measurements from the wing instead of using the pitch angle reading from the IMU. It
is possible that agents 2-4 could see their performance in the wind tunnel improved with these suggested changes.
However, their rigid behaviour would still pose a limitation for further application on outdoor flight.

In this work, the PID controller was manually tuned in the wind tunnel for �̂! control to serve as a baseline to
which to compare RL-based controllers. PID controllers are the most used controllers in commercial autopilots [50],
but they are only reliable in a specific range of operation where the relationship between the input and the output is
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linear. The relationship between the �̂! error and the elevator deflection was not linear at high angles of attack, and
the PID controller showed poor performance in this region. The comparison presented between the PID controller
and the �̂! control agents showed the benefits of using RL based controllers for this task, and stressed the limitations
of simple linear controllers to control nonlinear systems. It is possible that a different linear approach with a broader
range of operating points, such as gain scheduling, would perform better than the PID presented. However, this method
would have required an extensive amount of wind tunnel time, and it would still not guarantee good performance around
stall. Alternatively, other nonlinear control approaches applied to this problem may also see similar benefits to those
presented for RL.

One of the limitations of the control approach presented in this work resides in the fact that the maximum �̂!
reference value was manually given to the controllers, and that prior knowledge of the actual data was needed for this. It is
a question of future research to investigate the use of reinforcement learning as a means to find and control the platform to
a maximum �! unknown a priori. In addition, the overshoot characteristics seen in the control performance of some RL
agents suggest that further study into the reward function used in the training should consider a penalisation to account for
overshoot. This could be accounted for by limiting the elevator rate of deflection for large changes in�! error (�!3 −�̂!).

Overall, the results presented in this work indicated that reinforcement learning was a good approach for lift
coefficient control. The PPO algorithm was capable of dealing with the highly complex and large number of inputs, and
finding the relationships between the data to optimise the solution to achieve the control task. The hyperparameters used
in the algorithm were set to the default values in the Python package Stable Baselines [43]. However, it is possible that
different combinations of these may result in better or more robust performance, or in faster learning.

From a practical point of view, the controllers presented in this work could be integrated in a flight controller of an
SUAV for longitudinal dynamics control in outdoor flight. One potential implementation of the proposed controller in
an SUAV would see the aerodynamic coefficients directly controlled by the elevator, and altitude control achieved with
the throttle. This method of SUAV control prioritises the aerodynamic coefficients over attitude. Different missions and
applications of distributed sensor systems will see different implementations on a flight controller, but further work on
weight optimisation, sensor layout and online learning needs to be carried out in order to ensure a safe and efficient
deployment on an SUAV.

The methods presented here could be used in conjunction with manoeuvre trajectory control for agile fixed-wing
UAVs [51, 52] to allow for a larger safe flight-envelope to be used, for perched landing approaches to rely on the state of
the flow rather than the dynamic state of the aircraft as in [39–41, 53], as a proof of concept to control minimum drag,
the onset of stall or other aerodynamic combinations, or for transverse gust alleviation [6–8, 54].

In fact, the use of distributed sensors on the wing for aerodynamic coefficient control gives real-time estimation and
knowledge of the state of the flow affecting the vehicle as opposed to model-based methods [6–8]. The work presented
in this paper shows that these sensors are capable of providing the necessary information for closed-loop control.

VI. Conclusions
In this work, the experimental readings of an array of pressure and strain sensors distributed across the wing of an

SUAV were incorporated into an empirical 1 DOF flight dynamics model. This sensor information was also used to
train an ANN to estimate �! and �� . The simulation model was used to train a series of RL agents to find policies to
control �̂! given seven different observation spaces. The RL-based controllers were tested in wind tunnel experiments
together with a manually tuned PID �̂! controller, which served as a baseline. The performance comparisons gave a
better understanding of the effects different inputs and types of controllers have on this task. The results presented serve
as a proof of concept for future work. Overall, the findings in this study indicate that:

• The ANN-based aerodynamic coefficients estimators provided accurate estimations (within 1.92%MR for �̂! and
2.22%MR for �̂�) of the coefficients in wind tunnel experiments.

• The distributed pressure and strain sensor readings were enough to track �̂! in simulation, but the addition of a
pitot tube for + , or an IMU for @ were required to achieve the best performance in wind tunnel experiments.

• The agents trained with U data presented rigid policies based on the dynamic states of the platform, which was
emphasised by a misalignment in the simulation model that affected their performance in the wind tunnel tests.

• The agents that used %( as an input to their observation space in some form appeared to base their control policy
on the state of the flow. This allowed them to better adapt to the discrepancies between the simulation and
experimental environments.

• The performance of the agents in the wind tunnel was affected by factors which were not taken in to account in the
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dynamics model such as friction in the rig, noise in the load cell or in sensor readings, or rig configuration.
• The reward function could see further improvement by penalising overshoot, which could be done by accounting
for large and rapid elevator increases.

Appendix

A 1 DOF pitch dynamics model

" =
1
2
d+2(2�< (A.1)

�< = �<0 + �<UU + �<@
2

2+
@ + �<X4 X4 (A.2)

Table A.1 WOT 4 simulation parameters

Physical constants
Parameter Name Value Units
g Gravity 9.81 m/s2

d Air density 1.225 kg/m3

Aircraft model parameters
Parameter Name Value Units
S Wing area 0.1523 m2

c Wing mean aerod. chord 0.254 m

Table A.2 Pitching moment dynamics model for wind tunnel 1 DOF model

V, m/s Im0 Im" Imq Im%e

8 4.87 × 10−2 -1.72 -14.91 −9.19 × 10−1

10 5.19 × 10−2 -1.343 -13.38 −7.85 × 10−1

12 4.41 × 10−2 -1.11 -12.27 −6.64 × 10−1

14 3.67 × 10−2 −9.34 × 10−1 -11.56 −5.58 × 10−1

16 3.22 × 10−2 −8.04 × 10−1 -11.54 −4.88 × 10−1

18 2.60 × 10−2 −6.96 × 10−1 -10.93 −4.24 × 10−1

20 2.53 × 10−2 −5.95 × 10−1 -10.19 −3.57 × 10−1

Table A.3 WOT 4 PID gains for �̂! control of 1 DOF platform in the wind tunnel

�! controller
Parameter 10m/s 15m/s 18m/s
 ?�! −0.5 −0.4 −0.41
 8�! , s −0.6 −0.3 −0.32
 3�! , 1/s −0.02 −0.015 −0.001
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Table A.4 Maximum �! values from wind tunnel tests

V, m/s max �! value

8 1.10
10 1.08
12 1.07
14 1.06
16 1.05
18 1.04
20 1.03

B Training of reinforcement learning agents

Table B.1 Action space information of selected agents for each task

ID Observation space
Action space, °/s

(1) �̂; tracking (2) �̂; max (3) �̂;/�̂3
X1 %( [-1, 1] × ¤X4<0G [-1, 1] × ¤X4<0G [-1, 1] × ¤X4<0G
X2 States [-1, 1] × ¤X4<0G [±120,±50,±5, 0] [±120,±50,±5, 0]
X3 [U,+, @] [±120,±50,±5, 0] [±120,±50,±5, 0] [±120,±50,±5, 0]
X4 %( + States [-1, 1] × ¤X4<0G [±120,±50,±5, 0] [±120,±50,±5, 0]
X5 �̂; ++ + [�̂3]3 [±120,±50,±5, 0] [±120,±50,±5, 0] [±120,±50,±5, 0]
X6 �̂; + %( + [�̂3]3 [±120,±50,±5, 0] [±120,±50,±5, 0] [±120,±50,±5, 0]
X7 %( + @ [±120,±50,±5, 0] [±120,±50,±5, 0] [-1, 1] × ¤X4<0G
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