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Sim-to-Real Transfer for Fixed-Wing Uncrewed
Aerial Vehicle: Pitch Control by High-Fidelity

Modelling and Domain Randomization
Daichi Wada , Sergio Araujo-Estrada, and Shane Windsor

Abstract—Deep reinforcement learning has great potential to
automatically generate flight controllers for uncrewed aerial ve-
hicles (UAVs), however these controllers often fail to perform as
expected in real world environments due to differences between the
simulation environment and reality. This letter experimentally in-
vestigated how this reality gap effect could be mitigated, focusing on
fixed-wing UAV pitch control in wind tunnel tests. Three different
training approaches were conducted: a baseline approach that used
simple linear dynamics, a high-fidelity modeling approach, and a
domain randomization approach. It was found that the base line
controller was susceptible to the reality gap, while the other two ap-
proaches successfully transferred to real tests. To further examine
the controllers’ capabilities to generalize, a variety of configuration
changes were experimentally implemented on the UAV, such as
increased inertia, extended elevator area, and aileron offset. While
the high-fidelity controller failed to cope with these changes, the
controller with domain randomization maintained its performance.
These results highlight the importance of selecting appropriate
sim-to-real transfer approaches and how domain randomization
is applicable to fixed-wing UAV control with uncertainty in real
environments.

Index Terms—Aerial systems: mechanics and control, motion
control, reinforcement learning.

I. INTRODUCTION

FOR nonlinear control, neural-network-based controllers
trained using machine learning techniques have the poten-

tial to be an alternative approach to custom designed controllers,
with many potential applications in a variety of fields such as
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robotics and aviation. Supervised learning has potential benefits
for efficiency and smooth interpolation in applications where a
baseline controller already exists [1]. However, when a teaching
controller does not exist, or the goal is to create a new controller
with improved performance beyond that of existing controllers,
deep reinforcement learning is a more suitable approach. By
designing reward functions that elicit desired behaviors, the
controller is automatically trained to behave in an optimized
way, potentially offering time savings and performance benefits
over manual design processes [2], [3], [4], [5], [6], [7], [8].

Although deep reinforcement learning has produced convinc-
ing results in simulation, experimental demonstration is often
challenging due to discrepancies between simulated and real
environments; this is known as the “reality gap” [9], [10]. Deep
reinforcement learning usually optimizes a controller for a single
theoretical scenario and the controller’s performance can be poor
if the target domain is too different from the simulation [11].

To close the reality gap, sim-to-real transfer approaches have
been studied. One approach has been to improve the accuracy
of the simulation by using higher fidelity modeling, for example
by more accurate system identification [12], [13] or by utiliz-
ing another neural network to better approximate the systems
dynamics [14], [15]. Orthogonal to the high-fidelity modeling,
another solution is to generate controllers with robustness. This
is a viable approach especially when it is not feasible to fully re-
produce the rich dynamics of the real environment. An example
is the domain randomization approach, where parameters in the
source domain, such as the visual appearance of objects [16],
[17], [18], or dynamic parameters of the system [11], [12], [19],
[20], are randomized during training so that the controllers learn
robustness to environmental or system uncertainty.

In the aviation field specifically, sim-to-real transfers have
been demonstrated for quadrotors [21], [22], [23], but demon-
strations for fixed-wing UAVs remain rare. Fixed-wing UAVs
differ from quadrotors in that rather than directly controlling
the balance of thrust between rotors to control flight trajectory,
control surfaces are deflected to modify the aerodynamic forces
produced by the wing and tail. Fixed wing aerodynamics have
quite different characteristics from rotor aerodynamics, such as
fixed wings stalling at high angles of attack and having differ-
ent time scales for their dynamic effects. These fundamental
differences suggest the need for specific investigation of the
sim-to-real transfer considerations for fixed-wing UAV control.
A series of previous studies investigated typical relationships
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Fig. 1. A fixed-wing UAV in the wind tunnel. The pitch angle is controlled by
deflecting the elevator.

between the type of reality gaps and their consequence in control
performance [24], [25]. The effect of model errors, namely
friction and delay, were investigated experimentally using wind
tunnel testing. This study extends this line of previous research
on closing reality gaps by introducing a comparative perspective
of different sim-to-real transfer approaches. With an integrated
understanding of the cause and effect of reality gaps and how
they can be overcome, we aim to provide examples of how
different sim-to-real approaches influence the performance of
reinforcement-learning-based controllers for fixed-wing UAVs.

This study investigates deep reinforcement-learning-based
pitch control for a fixed-wing UAV, with a focus on sim-to-real
transfer. The fixed-wing UAV is tested in a one degree-of-
freedom configuration in a wind tunnel, in order to allow as-
sessment with a simple and clear basis (Fig. 1). Two sim-to-real
transfer approaches, namely high-fidelity modeling and domain
randomization, are compared. Furthermore, a variety of exper-
imental modifications were implemented on the model config-
uration, such as additional inertia, altered control effectiveness
and changes to aerodynamic performance. By examining the
controllers’ behavior, the difference between the two sim-to-real
transfer approaches is highlighted in terms of their capabilities
under unpredicted dynamic variations.

II. RELATED WORKS

A. Neural-Network-Based Control in Aviation
(Simulation Studies)

For nonlinear control, supervised learning has been applied
to flight control systems [1]. For example, gain schedules for
existing control systems [26], nonlinear transformations for
feedback linearisation [27], [28], and decision-making lookup
tables for collision avoidance [29], have all been approximated
by neural networks.

Deep reinforcement learning, on the other hand, gener-
ates policies (controllers) without needing a baseline. Deep-
reinforcement-learning based controllers have shown a high
level of performance for complex tasks, such as trajectory plan-
ning and navigation [4], [8], fixed-wing aircraft landing under
wind disturbance [5], flocking control for fixed-wing UAVs [6],
aerobatic maneuvers [7], and attitude control for fixed-wing
UAVS [3] and quadrotors [2].

All above aviation-related applications have been explored
in simulation and the challenge remains to transfer these ap-
proaches to real environments.

B. Sim-to-Real Transfer and Domain Randomization

The basic concept of sim-to-real transfer is to use a policy
learned in simulation in a real environment while keeping the
theoretical performance, even though differences exist between
the simulated and real environments (known as the reality gap).
To close the reality gap, previous works have proposed various
methods to mitigate the gap effect including Bayesian opti-
mization [30], deep inverse dynamics models [31], progressive
networks [32], and domain randomization. In domain random-
ization, a policy is trained to work across all of the simulated
environments with randomized parameters, thus becoming ro-
bust to real-world variability.

This idea has been experimentally tested in various appli-
cations, such as for control of robot arms [19], quadruped
robots [12], and dexterous robot hands [20]. As an extended al-
ternative, more adaptive approaches have been proposed, where
controllers identify, implicitly or explicitly, environmental pa-
rameters using a limited number of on-site trials, and then tune
the outputs correspondingly. For example, latent space adapta-
tion methods identify a latent representation of the dynamics
on-site and modulate the systems actions [33], [34], [35].

Domain randomization approaches do not require on-site
tuning when moving from sim-to-real. This is an advantage in
applications such as aviation, where flight trials are expensive
in terms of both time and cost and safety issues mean lose
of control has to be avoided during any trial-and-error tuning.
In this context, domain randomization has been successfully
applied to quadrotors, such as flight through a narrow gap [22]
and flight control of hybrid UAVs with a variety of flight
modes [21]. Investigation of trajectory tracking performance has
been also carried out from the viewpoint of how to design control
outputs (action spaces) [23]. However, studies of sim-to-real for
fixed-wing UAVs specifically remain rare. Therefore, inspired
by the previous success in quadrotors, this study applies domain
randomization to a fixed-wing UAV to explore the reality gap
effect and how it can be mitigated.

As the simulated environment with randomized parameters
can be regarded as a type of partially observable Markov decision
process, its optimal policy in general depends on access to
the state’s history [36]. In this sense, it becomes essential to
use policies with some form of memory-augmentation along
with domain randomization. To address this point, models using
recurrent neural networks have been proposed, including Gated
Recurrent Unit (GRU) [37] and Long Short-Term Memory
(LSTM). Another method is to use policies without memory
functions and instead input multiple time steps to policies [33],
[35]. These successful previous studies suggest that domain
randomization should work if the policy captures time histories
by either method. This study follows recent success in using
LSTM with domain randomization [19], [20].
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Fig. 2. Experimental configuration variants: (a) baseline with characteristic dimensions (b) added masses, (c) extended elevator, (d) deflected aileron.

III. METHODS

A. Aircraft Model

An off-the-shelf radio control aircraft (WOT4 Foam-E Mk2+,
Ripmax) was modified into a span-wise half model, mounted
to the side wall of a wind tunnel. The model was free to
pitch around the shaft of the wing at its root, as depicted in
Fig. 2(a). The model was equipped with an air speed sensor
(custom-built based on SDP31, Sensirion), an elevator servo and
an inertial measurement unit (IMU) (Pixhawk 1, 3DR). See [25]
for full details. The signal processing and elevator control was
conducted at a rate of 20Hz. The wind speed was kept constant
for each test case.

Two theoretical models were developed; an approximated lin-
ear model and a high-fidelity model including frictional effects.
The dynamics of these models were expressed as:

Iyyα̈ =
1

2
ρV 2S c CM − g4 tanh(g5q), (1)

CM = CM0
+ CMα

α+ CMq

c

2V
q + CMδe

δe, (2)

where Iyy is moment of inertia in pitch, ρ is air density, V is air
speed,S is wing area, c is chord length,α is pitch angle, q is pitch
rate, δe is elevator angle and g4 and g5 are the coefficients for
the Coulomb friction effect. Each of the CMx

terms represents
individual aerodynamic coefficients. These parameter values
are given in Table I. For the linear model, the friction effect
was set to g4 = 0. Detailed information about the parameter
identification and the model fidelity have been discussed in
previous research [25].

To assess the generalization performance of the controllers
presented here, four experimental model variants were tested.
Fig. 2(b) depicts the variant with added masses to increase
inertia. Two sets of 200 g masses were mounted to the pitching
shaft at a 15 cm radial distance from the center of the shaft.
Fig. 2(c) depicts the variant with the extended elevator, which
doubled the area of the elevator. This modification changed the
equilibrium point and the effectiveness of the elevator deflection.
Fig. 2(d) depicts the variant with the deflected aileron. The
aileron deflection was set to 40 ◦, which changed the equilibrium
pitch angle.

B. Controller Training

Deep reinforcement learning was conducted using the Prox-
imal Policy Optimization (PPO) algorithm [39], which ensured

TABLE I
PARAMETERS FOR SIMULATION AND PPO

learning stability by limiting the divergence between the old and
updated policies using the so-called clipped surrogate loss func-
tion. As described later in this section, actor-critic algorithms are
advantageous for domain randomization in that the critic func-
tion can utilize the randomized parameters in training, which
are generally not explicitly known to the controller. Although
there are other promising actor-critic algorithms including Twin
Delayed Deep Deterministic policy gradient (TD3) [40] and
Soft Actor-Critic (SAC) [22], [41], this study was inspired by
the success of previous studies employing PPO [8], [20], [23].
Table I summarizes the hyper-parameter settings for training
with PPO. The neural networks and training process were built
in a Python environment using the PyTorch framework (Ver.
1.7.1).

We designed a neural network controller which output the
elevator angle rate based on the state input. The elevator angle
rate rather than the elevator angle itself was chosen as an output
so that the output was directly used in a penalty function as
described later. The state space consisted of the error between
the target and observed pitch angle, observed pitch angle, pitch
rate, elevator angle and wind speed. The neural network archi-
tecture is illustrated in Fig. 3. The policy function observed
what was observable in the real application, that is, the dynamic
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Fig. 3. Schematic of the policy (top) and value (bottom) networks. The policy
received the state, which was processed by 128 LSTM cells and two 128 hidden
units with elu activations. The output layer specified the mean m of the action
distribution. The standard deviation Σ of the action distribution was specified
by a fixed diagonal matrix. The value function was modelled by a separate
network. The state and the dynamics parameter were received and processed by
128 LSTM cells and two 128 hidden units with elu activations.

parameters were unknown to the controller. The LSTM layers
were employed to find an optimal history-dependent policy that
adapted to every randomized environment. In the absence of
direct knowledge of the real dynamics, a history of past states
and actions was expected to help capture the system dynamics.
The value function was designed to observe the full conditions
because it was used only during training and the dynamic param-
eters of the simulator were known [19], [35]. The value function
estimates the value of the states in the randomized simulator.

Three types of controller were trained: the first was trained
with the linear model (baseline), the second was trained with the
friction model (high-fidelity modeling approach), and the third
was trained with domain randomization (robust approach). The
linear model was used as the basis for the domain randomization.
In the domain randomization, the aerodynamic coefficients were
randomly changed in each episode as listed in Table I. These
randomization factors were fed into the value function.

All controllers used the following common training con-
ditions, each episode had 30 s duration and 600 time steps,
and the control rate was set to 20Hz. The wind speed was
randomly chosen for each episode ranging from 8 to 22m/s,
and set constant over the episode. The target pitch schedules
were randomly assigned for each episode. Fig. 4 shows three
examples of the target pitch schedules with different random
seeds. State observation noise was applied at every time step. The
noise distributions for each observation parameter are shown in
Table I. These values were estimated from calibration tests of
the IMU and the air speed sensor. The elevator angle in the state
was the target value given in the previous time step. It was the
theoretical value, and therefore, the observation noise was not
applied.

Delay was randomly sampled and applied at every time step
based on the probability density function expressed as

f(x) =
1

(x− t0)σ
√
2π

exp

(
− (log(x− t0)− μ)2

2σ2

)

for x > t0, (3)

Fig. 4. Examples of the target pitch schedules. Each line shows the schedules
generated with different random seeds. The Ornstein–Uhlenbeck process [38],
with mean μ = 0, volatility σ = 2 and reverting rate towards the mean θ = 0.1,
was used to calculate 16 discrete points with random intervals, which are
indicated with circles. The adjacent points were linearly interpolated. The
initial point was randomly set within ±0.5 ◦, and the target pitch angles varied
approximately within ±10 ◦ during each episode.

Fig. 5. Learning curves for the three controller types. The blue, red and green
lines correspond to the controller trained with linear model, friction model and
domain randomization, respectively. For each controller type, five independent
training ran with different random seeds. The solid lines and shaded areas
represent the mean and the minimum to maximum range, respectively.

wherex is time (in s), t0 is offset (in s),σ is the standard deviation
(1.67 s) and μ is the mean (−5.27 s). This is a log-normal
function with the peak at t0, which was found to best fit the
measured delay in the previous experiments [25]. The effective
delay was empirically set as t0 = 0.100 s.

The reward function was defined as

r = −(|eα|+ 0.1|q|+ 0.1|a|+ 0.1|Δδe|), (4)

where eα (rad) is the difference between target and observed
pitch angle, q (rad/s) is the pitch rate, a (rad/s) is the action
output andΔδe (rad) is the deviation of the current elevator angle
from the exponential moving average with 5 /cent smoothing
factor. The pitch rate, action and elevator penalties encouraged
smooth and stable pitch maneuvers.

Fig. 5 shows the learning curves for the controllers considered
here. In the three training types, the total reward in the training
episodes reached saturation at around 1000 iterations and con-
verged for all trials, which indicated valid training results.

IV. RESULTS

A. Performance in Simulated and Real Environments

The performance of the three types of trained controllers was
assessed through simulation and in experiments. In the experi-
ments, the wind speed range was 10 – 20m/s at 2m/s intervals.
At each wind speed, control trials were repeated three times. For
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Fig. 6. Pitch control histories when the nominal wind speed was: (a) 10m/s and (b) 20m/s. In each panel, the left and right graphs show simulated and
experimental results, respectively. The controllers were trained using the linear model (blue line), the friction model (red line) and domain randomization (green line).
In contrast to the baseline performance (linear model), both the high-fidelity modeling approach (friction model) and the robust approach (domain randomization)
showed successful control in the experiments.

brevity, we present a subset of these cases; these were chosen
as representative of the behavior observed for all experimental
conditions, with similar trends being observed through wind
speeds and repetitive trials.

Fig. 6 shows a comparison of the pitch control time histories
for both simulation and real-world experiments. Fig. 6(a) shows
results for a wind speed of 10m/s, while Fig. 6(b) shows results
for 20m/s. In the simulation, the same system dynamics that
were used for training were used for cases presented here. To
ease comparison, a pitch angle doublet schedule was used as
reference for both simulations and experiments.

The three controllers successfully followed the target sched-
ules in both simulation scenarios, indicating valid training. How-
ever, the performance of the linear controller was unsatisfactory
for both wind speed experimental conditions. Two different fail-
ure modes were observed: an offset in pitch at 10m/s (Fig. 6(a));
and oscillating behavior at 20m/s (Fig. 6(b)). The offset in
pitch is thought to be related to friction effects, as at low wind
speeds, the elevator deflection did not produce enough moment
to overcome static friction and rotate the model. As for the
oscillating behavior, this could be explained by a combination of
friction and other factors such as system time delay. A previous
study [25] investigated the relationship between the simulated
delay in training and the effective delay in reality with this
experimental setup and concluded that if the delay used in the
training simulations was shorter than the actual experimental
delay then this induced oscillation at high wind speeds. This
behavior, i.e., the control performance not being guaranteed after
sim-to-real transfer, is typical of deep-reinforcement-learning-
based controllers when compensation measures are not taken.

In contrast, both the friction and domain randomization con-
trollers successfully followed the target pitch schedule in both
experimental conditions. The friction controller performance
was expected due to it being trained with a high-fidelity model.
The domain randomization controller was effective as it was
trained to be robust to uncertainty in the parameters of the

dynamics model. It was anticipated that varying the aerody-
namic coefficients would express similar dynamics to that of the
friction model. It was interesting to note that a larger phase lag
was observed, which was particularly evident after the reference
transition from −5 ◦ to 0 ◦ at 10m/s. The domain randomiza-
tion encouraged the controller to work across all the simulated
environments, and potentially made it conservative.

B. Generalized Performance Under Model Variations

To examine the applicability of the sim-to-real transfer ap-
proaches in an extended context of large topology and dynamics
variations, control experiments were conducted with the wind
tunnel model variants as depicted in Figs. 2(b)–2(d), using the
same controllers presented in Section IV-A (Fig. 6). Fig. 7
presents a comparison of the pitch control experiments con-
ducted with the model variants and using controllers trained
with the linear model (Fig. 7(a)), the friction model (Fig. 7(b)),
and domain randomization (Fig. 7(c)).

For the controller trained with the linear model, both failure
modes of pitch offset (for both wind speeds) and oscillating
behavior (for the higher wind speed) were observed for the added
masses and extended elevator variants (top and middle panels in
Fig. 7(a)). For the deflected aileron variant, pitch offset errors
were observed for both wind speeds (bottom panels in Fig. 7(a)).
This is likely explained by the pitching-down moment produced
by the aileron deflection.

For the controller trained with the friction model, the con-
troller was stable and showed good performance when applied to
the added masses and extended elevator variants for the 10m/s
wind speed case. However, the oscillation failure mode was
observed at the 20m/s wind speed case (top and middle-right
panels in Fig. 7(b)). When applied to deflected aileron variant,
the controller failed to compensate the pitch offset (bottom
panels in Fig. 7(b)).



11740 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

Fig. 7. Experimental results under a variety of model configuration changes and using controllers trained using: (a) the linear model (blue line), (b) the friction
model (red line) and (c) domain randomization (green line). Each panel shows results for two nominal wind speeds 10m/s (left plots) and 20m/s (right plots).
Additionally, each panel shows results for the added masses (top plots), the extended elevator (middle plots) and the deflected aileron (bottom plots) variants. Under
the model variations, only the domain randomization approach was able to follow the target pitch schedule.

Fig. 8. Root mean square errors for tracking the target pitch angle under model
variations. Error bar denotes standard deviation. Note that only the domain
randomization approach was able to maintain control performance across the
different model variations.

The controller trained with domain randomization success-
fully followed the target in both wind speeds and when applied
to all three variants. A robust response was observed for all the
experimental conditions, even at the higher wind speed where the
oscillating behavior was observed for the other two controllers,
displaying only a small overshoot during the transitory phases
of the maneuver. When applied to the deflected aileron variant,
the starting pitch offset was rapidly corrected and remained
negligible throughout the duration of the tests (bottom panels
in Fig. 7(c)).

To gain a statistical perspective, Fig. 8 shows the root mean
square error (RMSE) for the pitch tracking under model varia-
tions. The mean and standard deviation of RMSE were calcu-
lated from 18 individual experiments (three controller types, at
six wind speeds, from 10 – 20m/s with a 2m/s interval, and
three trials at each condition). Considering the similar RMSE
and the small standard deviations, domain randomization was
shown to be robust to the model variations conducted. Note that
although the friction model might seem to show only slight larger
RMSEs than domain randomization, there was a significant
difference in the quality of control as seen in Fig. 7.

V. DISCUSSION

To highlight the adaptability of each controller type (or lack
of) to different conditions, the different control actions for each
controller type were studied. Fig. 9 shows the elevator deflection
time histories for the three controllers considered here. To study
the controller behaviors without oscillation, only the 10m/s
wind speed case is presented. The test cases correspond to the
ones shown in Fig. 6(a) and 7.

For the controller trained with the linear model, the four
elevator maneuvers were almost identical, even when a variety of
errors (such as positive and negative pitch offsets) were present.
In the baseline linear dynamics simulation, the elevator and pitch
angles were uniquely related for a given wind speed, and training
under such dynamics resulted in a controller that simply learned
the simulation equilibrium conditions.

On the other hand, for the controller trained with the friction
model, the equilibrium condition was path-dependent (i.e., the
elevator-pitch angle equilibrium relationship was not unique),
which encouraged the controller to react to model variations.
This led to different behaviors in the elevator deflection histories
and a small degree of adaptability. However, when this controller
was applied to the deflected aileron variant, the elevator did
not show a significant difference in response, resulting in a
large pitch angle error. This is likely related to the effect of the
additional pitching moment, produced by the aileron deflection,
being larger than the one resulting from friction.

The elevator deflection histories of the controller trained with
domain randomization exhibited markedly different responses,
which highlighted its robustness to model parameter errors. Con-
centrating on the extended elevator variant, during the first half
of the experiments (0 s ≤ t ≤ 15 s), the control action sat above
the actions corresponding to the other three cases, to compensate
for the change in the equilibrium point caused by the extended
elevator. Then during the transition from 5 ◦ to −5 ◦ in pitch
reference, overshoot was observed at t ≈ 15 s, transitioning to a
smaller value at 15 s ≤ t ≤ 22.5 s. When applied to the deflected
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Fig. 9. Experimental elevator deflection time histories for the controllers trained with: (a) the linear model, (b) the friction model and (c) the domain randomization.
The control actions when applied to the baseline configuration and three variants have been overlaid, with the baseline shown in black, the added masses shown in
blue, the extended elevator shown in orange and the deflected aileron shown in yellow. All the results correspond to the 10m/s wind speed case. Note that only
the domain randomization controller adapted its output appropriately to changes in the model experimental parameters.

TABLE II
IDENTIFIED CHANGE IN DYNAMICS PARAMETERS FOR THREE VARIANTS

aileron variant, the action was significantly shifted towards
the negative elevator deflection side, which was necessary to
compensate for the pitching moment induced by the aileron.

The theoretical elevator deflection equilibrium conditions can
be computed by solving (1) and 2 for δe, and by considering both
α̈ = 0 and q = 0. This is given by

δ̄e = − CM0
+ CMα

ᾱ

CMδe

(5)

where δ̄e is the elevator deflection in equilibrium and ᾱ is
the equilibrium pitch angle. Using (5) and the variant-specific
aerodynamic parameters (Table II), the elevator deflection equi-
librium conditions for 5 ◦ pitch angle were −22.4 ◦, −18.6 ◦ and
−32.6 ◦ for the added mass, extended elevator and deflected
aileron configurations, respectively. When compared to the con-
troller actions shown in Fig. 9, only the controller actions of the
domain randomization controller (Fig. 9(c)) were close to these
values.

The analysis presented here shows that the domain random-
ization approach produced a controller with a better degree
of adaptability. Table II gives the experimentally estimated
change in value for each of the parameters corresponding to
the configuration variants and with respect to the baseline values
(Table I). When compared with the randomization range as listed
in Table I, some parameters exceeded the values assumed in
training. Considering the successful control results in experi-
ments, the domain randomization was able to encourage robust-
ness that was applicable to dynamics variation that were more
severe than assumed. Note that the true “working range” should
always be carefully examined as any case-specific evaluation
may not generalize for any combination of dynamics parameter
variations.

It is important to note that the wind speed was kept con-
stant in the experiment, which is a simplification of real world

flight conditions. This difference is likely to be significant and
possibly requires additional wind speed sensing and/or more
robust control capability against external disturbances. Future
work on sim-to-real approaches should examine varying wind
speed conditions.

VI. CONCLUSION

Here we studied sim-to-real transfer of pitch controllers for
a fixed-wing UAV. Three different approaches were studied
through controllers trained with a simple linear dynamics model,
a high-fidelity model and domain randomization. The perfor-
mance of these controllers was assessed via simulations and
experiments with a variety of configuration changes in the wind
tunnel. We found that only domain randomization was able to
perform consistently with variation in dynamic parameters. This
study highlights the importance of carrying out an experimental
investigation to evaluate the capabilities of controllers in a
real environment, and comparing different sim-to-real trans-
fer approaches to understand their respective applicability and
limitations.

To successfully apply deep reinforcement learning to fixed-
wing UAV flight control in real scenarios, future research could
look into extending the analysis presented here to multi-degree-
of-freedom situations under varying wind speeds, including
responsiveness and operation efficiency goals into the reward
function (aiming for both optimality and robustness), and study-
ing its applicability to inherently unstable aircraft or aircraft
with the ability to change stability (e.g. by means of geometry
morphing).
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