11,549 research outputs found

    Lattice thermal expansion and anisotropic displacements in urea, bromomalonic aldehyde, pentachloropyridine and naphthalene

    Full text link
    Anisotropic displacement parameters (ADPs) are commonly used in crystallography, chemistry and related fields to describe and quantify thermal motion of atoms. Within the very recent years, these ADPs have become predictable by lattice dynamics in combination with first-principles theory. Here, we study four very different molecular crystals, namely urea, bromomalonic aldehyde, pentachloropyridine, and naphthalene, by first-principles theory to assess the quality of ADPs calculated in the quasi-harmonic approximation. In addition, we predict both thermal expansion and thermal motion within the quasi-harmonic approximation and compare the predictions with experimental data. Very reliable ADPs are calculated within the quasi-harmonic approximation for all four cases up to at least 200 K, and they turn out to be in better agreement with experiment than the harmonic ones. In one particular case, ADPs can even reliably be predicted up to room temperature. Our results also hint at the importance of normal-mode anharmonicity in the calculation of ADPs

    Benchmarking calculations of excitonic couplings between bacteriochlorophylls

    Full text link
    Excitonic couplings between (bacterio)chlorophyll molecules are necessary for simulating energy transport in photosynthetic complexes. Many techniques for calculating the couplings are in use, from the simple (but inaccurate) point-dipole approximation to fully quantum-chemical methods. We compared several approximations to determine their range of applicability, noting that the propagation of experimental uncertainties poses a fundamental limit on the achievable accuracy. In particular, the uncertainty in crystallographic coordinates yields an uncertainty of about 20% in the calculated couplings. Because quantum-chemical corrections are smaller than 20% in most biologically relevant cases, their considerable computational cost is rarely justified. We therefore recommend the electrostatic TrEsp method across the entire range of molecular separations and orientations because its cost is minimal and it generally agrees with quantum-chemical calculations to better than the geometric uncertainty. We also caution against computationally optimizing a crystal structure before calculating couplings, as it can lead to large, uncontrollable errors. Understanding the unavoidable uncertainties can guard against striving for unrealistic precision; at the same time, detailed benchmarks can allow important qualitative questions--which do not depend on the precise values of the simulation parameters--to be addressed with greater confidence about the conclusions

    Mirrors for slow neutrons from holographic nanoparticle-polymer free-standing film-gratings

    Full text link
    We report on successful tests of holographically arranged grating-structures in nanoparticle-polymer composites in the form of 100 microns thin free-standing films, i.e. without sample containers or covers that could cause unwanted absorption/incoherent scattering of very-cold neutrons. Despite their large diameter of 2 cm, the flexible materials are of high optical quality and yield mirror-like reflectivity of about 90% for neutrons of 4.1 nm wavelength

    The XMM-LSS survey: the Class 1 cluster sample over the extended 11 deg2^2 and its spatial distribution

    Full text link
    This paper presents 52 X-ray bright galaxy clusters selected within the 11 deg2^2 XMM-LSS survey. 51 of them have spectroscopic redshifts (0.05<z<1.060.05<z<1.06), one is identified at zphot=1.9z_{\rm phot}=1.9, and all together make the high-purity "Class 1" (C1) cluster sample of the XMM-LSS, the highest density sample of X-ray selected clusters with a monitored selection function. Their X-ray fluxes, averaged gas temperatures (median TX=2T_X=2 keV), luminosities (median LX,500=5×1043L_{X,500}=5\times10^{43} ergs/s) and total mass estimates (median 5×1013h1M5\times10^{13} h^{-1} M_{\odot}) are measured, adapting to the specific signal-to-noise regime of XMM-LSS observations. The redshift distribution of clusters shows a deficit of sources when compared to the cosmological expectations, regardless of whether WMAP-9 or Planck-2013 CMB parameters are assumed. This lack of sources is particularly noticeable at 0.4z0.90.4 \lesssim z \lesssim 0.9. However, after quantifying uncertainties due to small number statistics and sample variance we are not able to put firm (i.e. >3σ>3 \sigma) constraints on the presence of a large void in the cluster distribution. We work out alternative hypotheses and demonstrate that a negative redshift evolution in the normalization of the LXTXL_{X}-T_X relation (with respect to a self-similar evolution) is a plausible explanation for the observed deficit. We confirm this evolutionary trend by directly studying how C1 clusters populate the LXTXzL_{X}-T_X-z space, properly accounting for selection biases. We point out that a systematically evolving, unresolved, central component in clusters and groups (AGN contamination or cool core) can impact the classification as extended sources and be partly responsible for the observed redshift distribution.[abridged]Comment: 33 pages, 21 figures, 3 tables ; accepted for publication in MNRA

    Point defects and clustering in uranium dioxide by LSDA+U calculations

    Full text link
    A comprehensive investigation on point defects and their clustering behavior in nonstoichiometric uranium dioxide UO2+x is carried out using LSDA+U method based on density functional theory. Accurate energetic information and charge transfers available so far are obtained. With these energies that have improved more than 50% over that of pure GGA and LDA, we show the density functional theory predicts the predominance of oxygen defects over uranium ones at any compositions, which is possible only after treated the localized 5f electrons properly. Calculations also suggest an upper bound of x~0.03 for oxygen clusters to start off. The volume change induced by point uranium defects is monotonic but nonlinear, whereas for oxygen defects, increase x always reduces the system volume linearly, except dimers that require extra space for accommodation, which has been identified as meta-stable ionic molecule. Though oxygen dimers usually occupy Willis O'' sites and mimic a single oxygen in energetics and charge state, they are rare at ambient conditions. Its decomposition process and vibrational properties have been studied carefully. To obtain a general clustering mechanism in anion-excess fluorites systematically, we also analyze the local stabilities of possible basic clustering modes of oxygen defects. The result shows an unified way to understand the structure of Willis type and cuboctahedral clusters in UO2+x and beta-U4O9. Finally we generalize the point defect model to the independent clusters approximation to include clustering effects, the impact on defect populations is discussed.Comment: 20 pages, 12 figure

    Ab initio investigation on oxygen defect clusters in UO2+x

    Full text link
    By first-principles LSDA+U calculations, we revealed that the current physical picture of defective uranium dioxide suggested solely by neutron diffraction analysis is unsatisfactory. An understanding based on quantum theory has been established as a thermodynamical competition among point defects and cuboctahedral cluster, which naturally interprets the puzzled origin of the asymmetric O' and O'' interstitials. It also gives a clear and consistent agreement with most available experimental data. Unfortunately, the observed high occupation of O'' site cannot be accounted for in this picture and is still a challenge for theoretical simulations.Comment: 4 pages, 3 figures, title change

    Quantum geometry and the Schwarzschild singularity

    Full text link
    In homogeneous cosmologies, quantum geometry effects lead to a resolution of the classical singularity without having to invoke special boundary conditions at the singularity or introduce ad-hoc elements such as unphysical matter. The same effects are shown to lead to a resolution of the Schwarzschild singularity. The resulting quantum extension of space-time is likely to have significant implications to the black hole evaporation process. Similarities and differences with the situation in quantum geometrodynamics are pointed out.Comment: 31 pages, 1 figur

    Evidence-informed teaching: self-assessment tool for teachers

    Get PDF
    This tool for teachers is a product of the data collection and analysis, including interviews with 82 teachers, carried out as part of a DfE-funded study Evidence-informed teaching: an evaluation of progress in England (Coldwell et al, 2017). It is designed to help teachers evaluate and consider their levels of interaction with evidence in terms of awareness, engagement and use; and illustrate, based on real examples and quotes, what different levels of interaction look like in more or less evidence-informed schools. It is jointly published with The Chartered College of Teachers and is freely available for download on its website

    The XXL Survey VIII: MUSE characterisation of intracluster light in a z\sim0.53 cluster of galaxies

    Get PDF
    Within a cluster, gravitational effects can lead to the removal of stars from their parent galaxies. Gas hydrodynamical effects can additionally strip gas and dust from galaxies. The properties of the ICL can therefore help constrain the physical processes at work in clusters by serving as a fossil record of the interaction history. The present study is designed to characterise this ICL in a ~10^14 M_odot and z~0.53 cluster of galaxies from imaging and spectroscopic points of view. By applying a wavelet-based method to CFHT Megacam and WIRCAM images, we detect significant quantities of diffuse light. These sources were then spectroscopically characterised with MUSE. MUSE data were also used to compute redshifts of 24 cluster galaxies and search for cluster substructures. An atypically large amount of ICL has been detected in this cluster. Part of the detected diffuse light has a very weak optical stellar component and apparently consists mainly of gas emission, while other diffuse light sources are clearly dominated by old stars. Furthermore, emission lines were detected in several places of diffuse light. Our spectral analysis shows that this emission likely originates from low-excitation parameter gas. The stellar contribution to the ICL is about 2.3x10^9 yrs old even though the ICL is not currently forming a large number of stars. On the other hand, the contribution of the gas emission to the ICL in the optical is much greater than the stellar contribution in some regions, but the gas density is likely too low to form stars. These observations favour ram pressure stripping, turbulent viscous stripping, or supernovae winds as the origin of the large amount of intracluster light. Since the cluster appears not to be in a major merging phase, we conclude that ram pressure stripping is the most plausible process that generates the observed ICL sources.Comment: Accepted in A&A, english enhanced, figure location different than in the A&A version due to different style files, shortened abstrac

    Degenerate Configurations, Singularities and the Non-Abelian Nature of Loop Quantum Gravity

    Full text link
    Degenerate geometrical configurations in quantum gravity are important to understand if the fate of classical singularities is to be revealed. However, not all degenerate configurations arise on an equal footing, and one must take into account dynamical aspects when interpreting results: While there are many degenerate spatial metrics, not all of them are approached along the dynamical evolution of general relativity or a candidate theory for quantum gravity. For loop quantum gravity, relevant properties and steps in an analysis are summarized and evaluated critically with the currently available information, also elucidating the role of degrees of freedom captured in the sector provided by loop quantum cosmology. This allows an outlook on how singularity removal might be analyzed in a general setting and also in the full theory. The general mechanism of loop quantum cosmology will be shown to be insensitive to recently observed unbounded behavior of inverse volume in the full theory. Moreover, significant features of this unboundedness are not a consequence of inhomogeneities but of non-Abelian effects which can also be included in homogeneous models.Comment: 28 pages, 1 figure; v2: extended discussion of singularity removal and summar
    corecore