36 research outputs found

    On the origins of NMR interaction tensors: Observations and theoretical models.

    Get PDF

    Multinuclear Solid-State Magnetic Resonance as a Sensitive Probe of Structural Changes upon the Occurrence of Halogen Bonding in Co-crystals

    Get PDF
    Although the understanding of intermolecular interactions, such as hydrogen bonding, is relatively well-developed, many additional weak interactions work both in tandem and competitively to stabilize a given crystal structure. Due to a wide array of potential applications, a substantial effort has been invested in understanding the halogen bond. Here, we explore the utility of multinuclear (13C, 14/15N, 19F, and 127I) solid-state magnetic resonance experiments in characterizing the electronic and structural changes which take place upon the formation of five halogen-bonded co-crystalline product materials. Single-crystal X-ray diffraction (XRD) structures of three novel co-crystals which exhibit a 1:1 stoichiometry between decamethonium diiodide (i.e., [(CH3)3N+(CH 2)10N+(CH3)3][2 I -]) and different para-dihalogen-substituted benzene moieties (i.e., p-C6X2Y4, X=Br, I; Y=H, F) are presented. 13C and 15N NMR experiments carried out on these and related systems validate sample purity, but also serve as indirect probes of the formation of a halogen bond in the co-crystal complexes in the solid state. Long-range changes in the electronic environment, which manifest through changes in the electric field gradient (EFG) tensor, are quantitatively measured using 14N NMR spectroscopy, with a systematic decrease in the 14N quadrupolar coupling constant (CQ) observed upon halogen bond formation. Attempts at 127I solid-state NMR spectroscopy experiments are presented and variable-temperature 19F NMR experiments are used to distinguish between dynamic and static disorder in selected product materials, which could not be conclusively established using solely XRD. Quantum chemical calculations using the gauge-including projector augmented-wave (GIPAW) or relativistic zeroth-order regular approximation (ZORA) density functional theory (DFT) approaches complement the experimental NMR measurements and provide theoretical corroboration for the changes in NMR parameters observed upon the formation of a halogen bond

    Elucidating an amorphous form stabilization mechanism of tenapanor hydrochloride: crystal structure analysis using Xray diffraction, NMR crystallography and molecular modelling

    Get PDF
    By the combined use of powder and single crystal X-ray diffraction, solid-state NMR, and molecular modelling, the crystal structures of two systems containing the unusually large tenapanor drug molecule have been determined: the free form, ANHY and a dihydrochloride salt form, 2HCl. Dynamic nuclear polarization (DNP) assisted solid-state NMR (SSNMR) crystallography investigations were found essential for the final assignment, and were used to validate the crystal structure of ANHY. From the structural informatics analysis of ANHY and 2HCl, conformational ring differences in one part of the molecule were observed which influences the relative orientation of a methyl group on a ring nitrogen and thereby impacts the crystallizability of the dihydrochloride salt. From quantum chemistry calculations, the dynamics between different ring conformations in tenapanor is predicted to be fast. Addition of HCl to tenapanor results in general in a mixture of protonated ring conformers and hence a statistical mix of diastereoisomers which builds up the amorphous form, a-2HCl. This was qualitatively verified by 13C CP/MAS NMR investigations of the amorphous form. Thus, to form any significant amount of the crystalline material 2HCl, which originates from the minor (i.e., energetically less stable) ring conformations, one needs to involve nitrogen deprotonation to allow exchange between minor and major conformations of ANHY in solution. Thus, by controlling the solution pH value to well below the pKa of ANHY, the equilibrium between ANHY and 2HCl can be controlled and by this mechanism the crystallization of 2HCl can be avoided and the amorphous form of the dichloride salt can therefore be stabilized

    Multinuclear Solid-State Magnetic Resonance Studies on ‘Exotic’ Quadrupolar Nuclei: Acquisition Methods, High-Order Effects, Quantum Chemical Computations, and NMR Crystallography

    No full text
    This dissertation attempts to extend the classes of halogen-containing systems which may be studied using solid-state nuclear magnetic resonance (SSNMR). As line shape broadening due to the quadrupolar interaction (QI) scales inversely with the applied field, high-field magnet technology is indispensable for this research. Combining advanced radiofrequency pulse sequences with high-field wideline data acquisition allowed for the collection of very broad SSNMR signals of all quadrupolar halogen nuclei (i.e., 35/37Cl, 79/81Br and 127I) within a reasonable amount of experimental time. The initial systems for study were of the MX2 variety (M = Mg, Ca, Sr, Ba; X = Cl, Br, I). In total, 9 anhydrous compounds were tested. The effects of hydrate formation were tested on 7 additional compounds. Systematic trends in the observed δiso values (and to a lesser extent, Ω and CQ) were found to be diagnostic of the extent of hydration in these materials. Resolving power was successfully tested using SrBr2, which possesses 4 magnetically unique sites. The composition of CaBr2•xH2O was convincingly determined using SSNMR data and the hydration trends noted above. The sensitivity of the QI to the local bonding environment (e.g., bond distance changes of less than 0.05 Å) was used to refine (when coupled with gauge-including projector augmented-wave density functional theory (GIPAW DFT) quantum chemical computations) the structure of MgBr2, and was used to correct prior NMR data for CaCl2 (earlier accounts had been performed upon a CaCl2 hydrate). During NMR data analysis of certain iodine-containing materials, it was found that standard fitting software (which uses perturbation theory) could not reproduce the observations. Proper analysis required the use of exact simulation software and allowed for the observation of high-order quadrupole-induced effects (HOQIE). This motivated further studies using rhenium-185/187 nuclei, where it was expected that HOQIE would be more dramatic. The observed rhenium SSNMR spectra possessed additional fine structure that had never been observed before experimentally, nor would be expected from currently-available perturbation theory analysis software. Lastly, preliminary results are shown where 127I SSNMR is used to study important supramolecular systems, and the composition of the popular synthetic reagent ‘GaI’ is elucidated

    Furosemide’s One Little Hydrogen Atom: NMR Crystallography Structure Verification of Powdered Molecular Organics

    Get PDF
    The potential of NMR crystallography to verify molecular crystal structures deposited in structural databases is evaluated, with two structures of the pharmaceutical furosemide serving as examples. While the structures differ in the placement of one H atom, using this approach, we verify one of the structures in the Cambridge Structural Database using quantitative tools, while establishing that the other structure does not meet the verification criteria

    Resolving Alternative Organic Crystal Structures using Density Functional Theory and NMR Chemical Shifts

    Get PDF
    Alternative (‘repeat’) determinations of organic crystal structures deposited in the Cambridge Structural Database are analysed to characterise the nature and magnitude of the differences between structure solutions obtained by diffraction methods. Of the 3132 structure pairs considered, over 20% exhibited local structural differences exceeding 0.25 Å. In most cases (about 83%), structural optimisation using density functional theory (DFT) resolved the differences. Many of the cases where distinct and chemically significant structural differences remained after optimisation involved differently positioned hydroxyl groups, with obvious implications for the correct description of hydrogen bonding. 1H and 13C chemical shifts from solid-state NMR experiments are proposed as an independent methodology in cases where DFT optimisation fails to resolve discrepancies

    Powder crystallography of pharmaceutical materials by combined crystal structure prediction and solid-state 1H NMR spectroscopy

    No full text
    A protocol for the ab initio crystal structure determination of powdered solids at natural isotopic abundance by combining solid-state NMR spectroscopy, crystal structure prediction, and DFT chemical shift calculations was evaluated to determine the crystal structures of four small drug molecules: cocaine, flutamide, flufenamic acid, and theophylline. For cocaine, flutamide and flufenamic acid, we find that the assigned 1H isotropic chemical shifts provide sufficient discrimination to determine the correct structures from a set of predicted structures using the root-mean-square deviation (rmsd) between experimentally determined and calculated chemical shifts. In most cases unassigned shifts could not be used to determine the structures. This method requires no prior knowledge of the crystal structure, and was used to determine the correct crystal structure to within an atomic rmsd of less than 0.12 Ã… with respect to the known reference structure. For theophylline, the NMR spectra are too simple to allow for unambiguous structure selection
    corecore