668 research outputs found

    The Church of Originalism

    Get PDF

    The Church of Originalism

    Get PDF

    Surface Grafting of Poly(L-glutamates). 2. Helix Orientation

    Get PDF
    In this paper the average helix orientation of surface-grafted poly(Ξ³-benzyl L-glutamate) (PBLG), poly(Ξ³-methyl L-glutamate) (PMLG), and poly(Ξ³-methyl L-glutamate)-co-(Ξ³-n-stearyl L-glutamate) (PMLGSLG 70/30) was investigated by means of FT-IR transmission spectroscopy. The theoretical relation between the average tilt angle (ΞΈ) and the absorption peak areas of three different backbone amide bands could be calculated because their transition dipole moment directions with respect to the helix axis were known. From the normalized absorptions, the average tilt angles of grafted helices of PBLG, PMLG, and PMLGSLG 70/30 were determined. The somewhat larger average angle of PMLG helices of 35 Β± 5Β° with respect to the substrate compared to the value of 32 Β± 5Β° of PBLG was due to the higher grafting density of PMLG. Because of the smaller helix diameter as a result of the smaller size of the methyl side group, more PMLG helices grew on the same surface area. Sterical hindrance and unfavorable polar interactions between unidirectional aligned helices forced the PMLG helices in a more upright arrangement. The even more perpendicular orientation of PMLGSLG 70/30 (48 Β± 6Β°) could be the result of incorporation of mainly Ξ³-methyl L-glutamate N-carboxyanhydride (MLG-NCA) monomers during the initiation step. Incorporation of the much larger Ξ³-n-stearyl L-glutamate N-carboxyanhydride (SLG-NCA) monomers afterward lead to enlarged angles with respect to the substrate. Due to swelling, a pronounced change in helix orientation of grafted PMLGSLG 70/30 in n-hexadecane was observed, resulting in an almost perpendicular helix orientation.

    Cryogrinding and Physical Analysis of a Thermoplastic Polyurethane Elastomer

    Get PDF
    https://tigerprints.clemson.edu/csrp/1016/thumbnail.jp

    Surface Grafting of Poly(L-glutamates). 3. Block Copolymerization

    Get PDF
    This paper describes for the first time the synthesis of surface-grafted AB-block copolypeptides, consisting of poly(Ξ³-benzyl L-glutamate) (PBLG) as the A-block and poly(Ξ³-methyl L-glutamate) (PMLG) as the B-block. Immobilized primary amine groups of (Ξ³-aminopropyl)triethoxysilane (APS) on silicon wafers initiated the ring-opening polymerization of N-carboxyanhydrides of glutamic acid esters (NCAs). After removal of the BLG-NCA monomer solution after a certain reaction time, the amine end groups of the formed PBLG blocks acted as initiators for the second monomers. This method provides the possibility of making layered structures of surface-grafted block copolymers with tuned properties. Ellipsometry and small-angle X-ray reflection (SAXR) measurements revealed the thickness of the polypeptide layers ranging from 45-100 Γ… of the first block to 140-270 Γ… for the total block copolypeptides. The chemical composition of the blocks was determined by X-ray photoelectron spectroscopy (XPS). In addition, Fourier transform infrared transmission spectroscopy (FT-IR) revealed that the polypeptide main chains of both blocks consisted of pure R-helices. The average orientation of the helices ranging from 22-42Β° with respect to the substrate within the first block to 31-35Β° in the second block could be derived with FT-IR as well.

    Synthesis and structural characterization of a mimetic membrane-anchored prion protein

    Get PDF
    During pathogenesis of transmissible spongiform encephalopathies (TSEs) an abnormal form (PrPSc) of the host encoded prion protein (PrPC) accumulates in insoluble fibrils and plaques. The two forms of PrP appear to have identical covalent structures, but differ in secondary and tertiary structure. Both PrPC and PrPSc have glycosylphospatidylinositol (GPI) anchors through which the protein is tethered to cell membranes. Membrane attachment has been suggested to play a role in the conversion of PrPC to PrPSc, but the majority of in vitro studies of the function, structure, folding and stability of PrP use recombinant protein lacking the GPI anchor. In order to study the effects of membranes on the structure of PrP, we synthesized a GPI anchor mimetic (GPIm), which we have covalently coupled to a genetically engineered cysteine residue at the C-terminus of recombinant PrP. The lipid anchor places the protein at the same distance from the membrane as does the naturally occurring GPI anchor. We demonstrate that PrP coupled to GPIm (PrP-GPIm) inserts into model lipid membranes and that structural information can be obtained from this membrane-anchored PrP. We show that the structure of PrP-GPIm reconstituted in phosphatidylcholine and raft membranes resembles that of PrP, without a GPI anchor, in solution. The results provide experimental evidence in support of previous suggestions that NMR structures of soluble, anchor-free forms of PrP represent the structure of cellular, membrane-anchored PrP. The availability of a lipid-anchored construct of PrP provides a unique model to investigate the effects of different lipid environments on the structure and conversion mechanisms of PrP

    First results from the JWST Early Release Science Program Q3D: Benchmark Comparison of Optical and Mid-IR Tracers of a Dusty, Ionized Red Quasar Wind at z=0.435

    Full text link
    The [OIII] 5007 A emission line is the most common tracer of warm, ionized outflows in active galactic nuclei across cosmic time. JWST newly allows us to use mid-infrared spectral features at both high spatial and spectral resolution to probe these same winds. Here we present a comparison of ground-based, seeing-limited [OIII] and space-based, diffraction-limited [SIV] 10.51 micron maps of the powerful, kpc-scale outflow in the Type 1 red quasar SDSS J110648.32+480712.3. The JWST data are from the Mid-InfraRed Instrument (MIRI). There is a close match in resolution between the datasets (0."4--0."6), in ionization potential of the O+2 and S+3 ions (35 eV), and in line sensitivity (1e-17 to 2e-17 erg/s/cm2/arcsec2). The [OIII] and [SIV] line shapes match in velocity and linewidth over much of the 20 kpc outflowing nebula, and [SIV] is the brightest line in the rest-frame 3.5--19.5 micron range, demonstrating its usefulness as a mid-IR probe of quasar outflows. [OIII] is nevertheless intriniscally brighter and provides better contrast with the point-source continuum, which is strong in the mid-IR. There is a strong anticorrelation of [OIII]/[SIV] with average velocity, which is consistent with a scenario of differential obscuration between the approaching (blueshifted) and receding (redshifted) sides of the flow. The dust in the wind may also obscure the central quasar, consistent with models that attribute red quasar extinction to dusty winds.Comment: Submitted to ApJ

    Targeting HSP90 for cancer therapy

    Get PDF
    Heat-shock proteins (HSPs) are molecular chaperones that regulate protein folding to ensure correct conformation and translocation and to avoid protein aggregation. Heat-shock proteins are increased in many solid tumours and haematological malignancies. Many oncogenic proteins responsible for the transformation of cells to cancerous forms are client proteins of HSP90. Targeting HSP90 with chemical inhibitors would degrade these oncogenic proteins, and thus serve as useful anticancer agents. This review provides an overview of the HSP chaperone machinery and the structure and function of HSP90. We also highlight the key oncogenic proteins that are regulated by HSP90 and describe how inhibition of HSP90 could alter the activity of multiple signalling proteins, receptors and transcriptional factors implicated in carcinogenesis

    The anti-myeloma activity of a novel purine scaffold HSP90 inhibitor PU-H71 is via inhibition of both HSP90A and HSP90B1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Heat shock protein 90 (HSP90) inhibitors have emerged as a promising class of anti-cancer drugs in both solid and hematologic malignancies. The HSP90 family includes the cytosolic HSP90 (HSP90AA1), the ER paralogue gp96 (HSP90B1) and the mitochondrial member TRAP1 (HSP90L). We evaluated the <it>in vitro </it>anti-tumor activity and mechanism of action of PU-H71, a novel purine scaffold HSP90 inhibitor in human multiple myeloma cell lines.</p> <p>Methods</p> <p>Multiple human myeloma cell lines including cells that are resistant to corticosteroids and bortezimab were treated with PU-H71, followed by analysis of cell viability, cell cycle progression and apoptosis, by flow cytometry and caspase 3 immunoblot. Induction of unfolded protein response was studied by XBP-1 s immunoblot. The role of gp96 was further assessed by small hairpin RNA knockdown of gp96 before treatment with PU-H71.</p> <p>Results</p> <p>PU-H71 has potent <it>in vitro </it>anti-myeloma activity in both drug-sensitive and drug-resistant cell lines. PU-H71 activates the unfolded protein response and induces caspase-dependent apoptosis. The stable gp96 knockdown human myeloma cell line was found to be more resistant to PU-H71 and other HSP90 inhibitors including 17-AAG and 17-DMAG, even though these cells are more sensitive to conventional anti-myeloma drugs.</p> <p>Conclusion</p> <p>We conclude that PU-H71 is a promising drug for the treatment of myeloma. Our finding further suggests that PU-H71 and the geldanamycin analogues work in part by inhibiting the endoplasmic reticulum gp96 along with the cytosolic HSP90.</p
    • …
    corecore