244 research outputs found
Longitudinal multivariate tensor- and searchlight-based morphometry using permutation testing
Tensor based morphometry [1] was used to detect
statistically significant regions of neuroanatomical
change over time in a comparison between 36 probable
Alzheimer's Disease patients and 20 age- and sexmatched
controls. Baseline and twelve-month repeat
Magnetic Resonance images underwent tied spatial
normalisation [10] and longitudinal high-dimensional
warps were then estimated. Analyses involved univariate
and multivariate data derived from the longitudinal
deformation fields. The most prominent findings were
expansion of the fluid spaces, and contraction of the
hippocampus and temporal region. Multivariate measures
were notably more powerful, and have the potential to
identify patterns of morphometric difference that would
be overlooked by conventional mass-univariate analysis
XUV Opacity of Aluminum between the Cold-Solid to Warm-Plasma Transition
We present calculations of the free-free XUV opacity of warm, solid-density
aluminum at photon energies between the plasma frequency at 15 eV and the
L-edge at 73 eV, using both density functional theory combined with molecular
dynamics and a semi-analytical model in the RPA framework with the inclusion of
local field corrections. As the temperature is increased from room temperature
to 10 eV, with the ion and electron temperatures equal, we calculate an
increase in the opacity in the range over which the degree of ionization is
constant. The effect is less pronounced if only the electron temperature is
allowed to increase. The physical significance of these increases is discussed
in terms of intense XUV-laser matter interactions on both femtosecond and
picosecond time-scales.Comment: 4 pages, 3 figure
Wavelet multiscale analysis for hedge funds: scaling and strategies
The wide acceptance of Hedge Funds by Institutional Investors and Pension Funds has led to an explosive growth in assets under management. These investors are drawn to Hedge Funds due to the seemingly low correlation with traditional investments and the attractive returns.
The correlations and market risk (the Beta in the Capital Asset Pricing Model) of Hedge Funds are generally calculated using monthly returns data, which may produce misleading results as Hedge Funds often hold illiquid exchange-traded securities or difficult to price over-the-
counter securities. In this paper, the Maximum Overlap Discrete Wavelet Transform (MODWT) is applied to measure the scaling properties of Hedge Fund correlation and market risk with respect to the S&P 500. It is found that the level of correlation and market risk varies greatly
according to the strategy studied and the time scale examined. Finally, the effects of scaling properties on the risk profile of a portfolio made up of Hedge Funds is studied using correlation matrices calculated over different time horizons
Traditional eye medicine use in microbial keratitis in Uganda : a mixed methods study [version 2; peer review: 2 approved]
Background: Traditional eye medicine (TEM) is frequently used to treat microbial keratitis (MK) in many parts of Africa. Few reports have suggested that this is associated with a worse outcome. We undertook this large prospective study to determine how TEM use impacts presentation and outcome of MK and to explore reasons why people use TEM for treatment in Uganda. Methods: In a mixed method prospective cohort study, we enrolled patients presenting with MK at the two main eye units in Southern Uganda between December 2016 and March 2018 and collected information on history, TEM use, microbiology and 3-month outcomes. We conducted qualitative interviews with patients, carers traditional healers on reasons why people use TEM. Outcome measures included presenting vision and at 3-months, comparing TEM Users versus Non-Users. A thematic coding framework was deployed to explore reasons for use of TEM. Results: Out of 313 participants enrolled, 188 reported TEM use. TEM Users had a delayed presentation; median presenting time 18 days versus 14 days, p= 0.005; had larger ulcers 5.6 mm versus 4.3 mm p=0.0005; a worse presenting visual acuity median logarithm of the minimum angle of resolution (Log MAR) 1.5 versus 0.6, p=0.005; and, a worse visual acuity at 3 months median Log MAR 0.6 versus 0.2, p=0.010. In a multivariable logistic regression model, distance from the eye hospital and delayed presentation were associated with TEM use. Reasons for TEM use included lack of confidence in conventional medicine, health system breakdown, poverty, fear of the eye hospital, cultural belief in TEM, influence from traditional healers, personal circumstances and ignorance. Conclusion: TEM users had poorer clinical presentation and outcomes. Capacity building of the primary health centres to improve access to eye care and community behavioural change initiatives against TEM use should be encouraged
Genetic evidence for different adiposity phenotypes and their opposing influence on ectopic fat and risk of cardiometabolic disease
To understand the causal role of adiposity and ectopic fat in type 2 diabetes and cardiometabolic diseases, we aimed to identify two clusters of adiposity genetic variants, one with ‘adverse’ metabolic effects (UFA) and the other with, paradoxically, ‘favourable’ metabolic effects (FA). We performed a multivariate genome-wide association study using body fat percentage and metabolic biomarkers from UK Biobank and identified 38 UFA and 36 FA variants. Adiposity-increasing alleles were associated with an adverse metabolic profile, higher risk of disease, higher CRP, higher fat in subcutaneous and visceral adipose tissue, liver and pancreas for UFA; and a favourable metabolic profile, lower risk of disease, higher CRP, higher subcutaneous adipose tissue but lower liver fat for FA. We detected no sexual dimorphism. The Mendelian randomization studies provided evidence for risk-increasing effect of UFA and protective effect of FA on type 2 diabetes, heart disease, hypertension, stroke, non-alcoholic fatty liver disease and polycystic ovary syndrome. FA is distinct from UFA by its association with lower liver fat, and protection from cardiometabolic diseases; it was not associated with visceral or pancreatic fat. Understanding the difference in FA and UFA may lead to new insights in preventing, predicting and treating of cardiometabolic diseases
Fuzzy Fibers: Uncertainty in dMRI Tractography
Fiber tracking based on diffusion weighted Magnetic Resonance Imaging (dMRI)
allows for noninvasive reconstruction of fiber bundles in the human brain. In
this chapter, we discuss sources of error and uncertainty in this technique,
and review strategies that afford a more reliable interpretation of the
results. This includes methods for computing and rendering probabilistic
tractograms, which estimate precision in the face of measurement noise and
artifacts. However, we also address aspects that have received less attention
so far, such as model selection, partial voluming, and the impact of
parameters, both in preprocessing and in fiber tracking itself. We conclude by
giving impulses for future research
CAGO: A Software Tool for Dynamic Visual Comparison and Correlation Measurement of Genome Organization
CAGO (Comparative Analysis of Genome Organization) is developed to address two critical shortcomings of conventional genome atlas plotters: lack of dynamic exploratory functions and absence of signal analysis for genomic properties. With dynamic exploratory functions, users can directly manipulate chromosome tracks of a genome atlas and intuitively identify distinct genomic signals by visual comparison. Signal analysis of genomic properties can further detect inconspicuous patterns from noisy genomic properties and calculate correlations between genomic properties across various genomes. To implement dynamic exploratory functions, CAGO presents each genome atlas in Scalable Vector Graphics (SVG) format and allows users to interact with it using a SVG viewer through JavaScript. Signal analysis functions are implemented using R statistical software and a discrete wavelet transformation package waveslim. CAGO is not only a plotter for generating complex genome atlases, but also a platform for exploring genome atlases with dynamic exploratory functions for visual comparison and with signal analysis for comparing genomic properties across multiple organisms. The web-based application of CAGO, its source code, user guides, video demos, and live examples are publicly available and can be accessed at http://cbs.ym.edu.tw/cago
Failure of adaptive self-organized criticality during epileptic seizure attacks
Critical dynamics are assumed to be an attractive mode for normal brain
functioning as information processing and computational capabilities are found
to be optimized there. Recent experimental observations of neuronal activity
patterns following power-law distributions, a hallmark of systems at a critical
state, have led to the hypothesis that human brain dynamics could be poised at
a phase transition between ordered and disordered activity. A so far unresolved
question concerns the medical significance of critical brain activity and how
it relates to pathological conditions. Using data from invasive
electroencephalogram recordings from humans we show that during epileptic
seizure attacks neuronal activity patterns deviate from the normally observed
power-law distribution characterizing critical dynamics. The comparison of
these observations to results from a computational model exhibiting
self-organized criticality (SOC) based on adaptive networks allows further
insights into the underlying dynamics. Together these results suggest that
brain dynamics deviates from criticality during seizures caused by the failure
of adaptive SOC.Comment: 7 pages, 5 figure
On Some Problems in Discrete Wavelet Analysis of Bivariate Spectra with an Application to Business Cycle Synchronization in the Euro Zone
The paper considers some of the problems emerging from discrete wavelet analysis of popular bivariate spectral quantities like the coherence and phase spectra and the frequency-dependent time delay. The approach taken here, introduced by Whitcher and Craigmile (2004), is based on the maximal overlap discrete Hilbert wavelet transform (MODHWT). Firstly, we point at a deficiency in the implementation of the MODHWT and suggest using a modified implementation scheme resembling the one applied in the context of the dual-tree complex wavelet transform of Kingsbury (see Selesnick et al., 2005). Secondly, via a broad set of simulation experiments we examine small and large sample properties of two wavelet estimators of the scale-dependent time delay. The estimators are: the wavelet cross-correlator and the wavelet phase angle-based estimator. Our results provide some practical guidelines for empirical examination of short- and medium-term lead-lag relations for octave frequency bands. Besides, we show how the MODHWT-based wavelet quantities can serve to approximate the Fourier bivariate spectra and discuss certain issues connected with building confidence intervals for them. The discrete wavelet analysis of coherence and phase angle is illustrated with a scale-dependent examination of business cycle synchronization between 11 euro zone member countries. The study is supplemented with wavelet analysis of variance and covariance of the euro zone business cycles. The empirical examination underlines good localization properties and high computational efficiency of the wavelet transformations applied, and provides new arguments in favour of the endogeneity hypothesis of the optimum currency area criteria as well as a wavelet evidence on dating the Great Moderation in the euro zone
- …