40 research outputs found

    A permissive function of phosphoinositide 3-kinase in Ras activation mediated by inhibition of GTPase-activating proteins

    Get PDF
    AbstractThe activation status of the guanosine triphosphate (GTP)-binding protein Ras is dictated by the relative intensities of two opposing reactions: the formation of active Ras–GTP complexes, promoted by guanine-nucleotide exchange factors (GEFs), and their conversion to inactive Ras–GDP as a result of the deactivating action of GTPase-activating proteins (GAPs). The relevance of phosphoinositide 3-kinase (PI 3-kinase) to these processes is still unclear. We have investigated the regulation of Ras activation by PI 3-kinase in the myelomonocytic U937 cell line. These cells exhibited basal levels of Ras—GTP, which were suppressed by two PI 3-kinase inhibitors and a dominant-negative PI 3-kinase. In addition, PI 3-kinase inhibition aborted Ras activation by all stimuli tested, including foetal calf serum (FCS) and phorbol 12-myristate 13-acetate (TPA). Significantly, TPA does not activate PI 3-kinase in U937 cells, indicating that PI 3-kinase has a permissive rather than an intermediary role in Ras activation. Investigation of the mechanism of PI 3-kinase action revealed that inhibition of PI 3-kinase does not affect nucleotide exchange on Ras but abrogates Ras–GTP accumulation through an increase in GAP activity. These findings establish blockage of GAP action as the mechanism underlying a permissive function of PI 3-kinase in Ras activation

    PI3Kγ Mediates Microglial Proliferation and Cell Viability via ROS

    Get PDF
    (1) Background: Rapid microglial proliferation contributes to the complex responses of the innate immune system in the brain to various neuroinflammatory stimuli. Here, we investigated the regulatory function of phosphoinositide 3-kinase γ (PI3Kγ) and reactive oxygen species (ROS) for rapid proliferation of murine microglia induced by LPS and ATP. (2) Methods: PI3Kγ knockout mice (PI3Kγ KO), mice expressing catalytically inactive PI3Kγ (PI3Kγ KD) and wild-type mice were assessed for microglial proliferation using an in vivo wound healing assay. Additionally, primary microglia derived from newborn wild-type, PI3Kγ KO and PI3Kγ KD mice were used to analyze PI3Kγ effects on proliferation and cell viability, senescence and cellular and mitochondrial ROS production; the consequences of ROS production for proliferation and cell viability after LPS or ATP stimulation were studied using genetic and pharmacologic approaches. (3) Results: Mice with a loss of lipid kinase activity showed impaired proliferation of microglia. The prerequisite of induced microglial proliferation and cell viability appeared to be PI3Kγ-mediated induction of ROS production. (4) Conclusions: The lipid kinase activity of PI3Kγ plays a crucial role for microglial proliferation and cell viability after acute inflammatory activation

    Memory-Like Responses of Brain Microglia Are Controlled by Developmental State and Pathogen Dose

    Get PDF
    Microglia, the innate immune cells of the central nervous system, feature adaptive immune memory with implications for brain homeostasis and pathologies. However, factors involved in the emergence and regulation of these opposing responses in microglia have not been fully addressed. Recently, we showed that microglia from the newborn brain display features of trained immunity and immune tolerance after repeated contact with pathogens in a dose-dependent manner. Here, we evaluate the impact of developmental stage on adaptive immune responses of brain microglia after repeated challenge with ultra-low (1 fg/ml) and high (100 ng/ml) doses of the endotoxin LPS in vitro. We find that priming of naïve microglia derived from newborn but not mature and aged murine brain with ultra-low LPS significantly increased levels of pro-inflammatory mediators TNF-α, IL-6, IL-1β, MMP-9, and iNOS as well as neurotrophic factors indicating induction of trained immunity (p \u3c 0.05). In contrast, stimulation with high doses of LPS led to a robust downregulation of pro-inflammatory cytokines and iNOS independent of the developmental state, indicating induced immune tolerance. Furthermore, high-dose priming with LPS upregulated anti-inflammatory mediators IL-10, Arg-1, TGF- β, MSR1, and IL-4 in newborn microglia (p \u3c 0.05). Our data indicate pronounced plasticity of the immune response of neonate microglia compared with microglia derived from mature and aged mouse brain. Induced trained immunity after priming with ultra-low LPS doses may be responsible for enhanced neuro-inflammatory susceptibility of immature brain. In contrast, the immunosuppressed phenotype following high-dose LPS priming might be prone to attenuate excessive damage after recurrent systemic inflammation

    The Role of the Pathogen Dose and PI3Kγ in Immunometabolic Reprogramming of Microglia for Innate Immune Memory

    Get PDF
    Microglia, the innate immune cells of the CNS, exhibit long-term response changes indicative of innate immune memory (IIM). Our previous studies revealed IIM patterns of microglia with opposing immune phenotypes: trained immunity after a low dose and immune tolerance after a high dose challenge with pathogen-associated molecular patterns (PAMP). Compelling evidence shows that innate immune cells adopt features of IIM via immunometabolic control. However, immunometabolic reprogramming involved in the regulation of IIM in microglia has not been fully addressed. Here, we evaluated the impact of dose-dependent microglial priming with ultra-low (ULP, 1 fg/mL) and high (HP, 100 ng/mL) lipopolysaccharide (LPS) doses on immunometabolic rewiring. Furthermore, we addressed the role of PI3Kγ on immunometabolic control using naïve primary microglia derived from newborn wild-type mice, PI3Kγ-deficient mice and mice carrying a targeted mutation causing loss of lipid kinase activity. We found that ULP-induced IIM triggered an enhancement of oxygen consumption and ATP production. In contrast, HP was followed by suppressed oxygen consumption and glycolytic activity indicative of immune tolerance. PI3Kγ inhibited glycolysis due to modulation of cAMP-dependent pathways. However, no impact of specific PI3Kγ signaling on immunometabolic rewiring due to dose-dependent LPS priming was detected. In conclusion, immunometabolic reprogramming of microglia is involved in IIM in a dose-dependent manner via the glycolytic pathway, oxygen consumption and ATP production: ULP (ultra-low-dose priming) increases it, while HP reduces it

    phosphoinositide 3 kinase gamma controls inflammation induced myocardial depression via sequential camp and inos signalling

    Get PDF
    Aims Sepsis-induced myocardial depression (SIMD), an early and frequent event of infection-induced systemic inflammatory response syndrome (SIRS), is characterized by reduced contractility irrespective of enhanced adrenergic stimulation. Phosphoinositide-3 kinase γ (PI3Kγ) is known to prevent β-adrenergic overstimulation via its scaffold function by activating major cardiac phosphodiesterases and restricting cAMP levels. However, the role of PI3Kγ in SIRS-induced myocardial depression is unknown. This study is aimed at determining the specific role of lipid kinase-dependent and -independent functions of PI3Kγ in the pathogenesis of SIRS-induced myocardial depression. Methods and results PI3Kγ knockout mice (PI3Kγ−/−), mice expressing catalytically inactive PI3Kγ (PI3KγKD/KD), and wild-type mice (P3Kγ+/+) were exposed to lipopolysaccharide (LPS)-induced systemic inflammation and assessed for survival, cardiac autonomic nervous system function, and left ventricular performance. Additionally, primary adult cardiomyocytes were used to analyse PI3Kγ effects on myocardial contractility and inflammatory response. SIRS-induced adrenergic overstimulation induced a transient hypercontractility state in PI3Kγ−/− mice, followed by reduced contractility. In contrast, P3Kγ+/+ mice and PI3KγKD/KD mice developed an early and ongoing myocardial depression despite exposure to similarly increased catecholamine levels. Compared with cells from P3Kγ+/+ and PI3KγKD/KD mice, cardiomyocytes from PI3Kγ−/− mice showed an enhanced and prolonged cAMP-mediated signalling upon norepinephrine and an intensified LPS-induced proinflammatory response characterized by nuclear factor of activated T-cells-mediated inducible nitric oxide synthase up-regulation. Conclusions This study reveals the lipid kinase-independent scaffold function of PI3Kγ as a mediator of SIMD during inflammation-induced SIRS. Activation of cardiac phosphodiesterases via PI3Kγ is shown to restrict myocardial hypercontractility early after SIRS induction as well as the subsequent inflammatory responses

    Targeted delivery of a phosphoinositide 3-kinase γ inhibitor to restore organ function in sepsis

    Get PDF
    Jaundice, the clinical hallmark of infection-associated liver dysfunction, reflects altered membrane organization of the canalicular pole of hepatocytes and portends poor outcomes. Mice lacking phosphoinositide 3-kinase-γ (PI3Kγ) are protected against membrane disintegration and hepatic excretory dysfunction. However, they exhibit a severe immune defect that hinders neutrophil recruitment to sites of infection. To exploit the therapeutic potential of PI3Kγ inhibition in sepsis, a targeted approach to deliver drugs to hepatic parenchymal cells without compromising other cells, in particular immune cells, seems warranted. Here, we demonstrate that nanocarriers functionalized through DY-635, a fluorescent polymethine dye, and a ligand of organic anion transporters can selectively deliver therapeutics to hepatic parenchymal cells. Applying this strategy to a murine model of sepsis, we observed the PI3Kγ-dependent restoration of biliary canalicular architecture, maintained excretory liver function, and improved survival without impairing host defense mechanisms. This strategy carries the potential to expand targeted nanomedicines to disease entities with systemic inflammation and concomitantly impaired barrier functionality

    Fever and hypothermia represent two populations of sepsis patients and are associated with outside temperature

    Get PDF
    Abstract Background Fever and hypothermia have been observed in septic patients. Their influence on prognosis is subject to ongoing debates. Methods We did a secondary analysis of a large clinical dataset from a quality improvement trial. A binary logistic regression model was calculated to assess the association of the thermal response with outcome and a multinomial regression model to assess factors associated with fever or hypothermia. Results With 6542 analyzable cases we observed a bimodal temperature response characterized by fever or hypothermia, normothermia was rare. Hypothermia and high fever were both associated with higher lactate values. Hypothermia was associated with higher mortality, but this association was reduced after adjustment for other risk factors. Age, community-acquired sepsis, lower BMI and lower outside temperatures were associated with hypothermia while bacteremia and higher procalcitonin values were associated with high fever. Conclusions Septic patients show either a hypothermic or a fever response. Whether hypothermia is a maladaptive response, as indicated by the higher mortality in hypothermic patients, or an adaptive response in patients with limited metabolic reserves under colder environmental conditions, remains an open question. Trial registration The original trial whose dataset was analyzed was registered at ClinicalTrials.gov (NCT01187134) on August 23, 2010, the first patient was included on July 1, 2011

    Phosphoinositide 3-kinase γ mediates Jun kinase activation via its lipid-kinase activity

    Get PDF
    Phosphoinositide 3-kinases (PI3K) are bifunctional enzymes expressing lipid- and protein-kinase activities. PI3K lipid kinase is involved in the control of cell motility, survival and other cellular reactions. Recent data point to specific signaling functions of PI3K protein-kinase activities. The PI3K species g has been shown to stimulate major signaling paths to the protein kinases Erk, JNK and PKB, in COS-7 cells. The present work was aimed to decipher the signaling reactions involved in the control of JNK activity by PI3Kg. Using functionally defined mutants we demonstrate an essential role of PI3Kg lipid-kinase activity for JNK stimulation. Together with recent findings these data evidence differential effects of PI3Kg protein- and lipidkinase activities on Erk, JNK and PKB signaling pathways
    corecore