3,991 research outputs found
Detection Of KOI-13.01 Using The Photometric Orbit
We use the KOI-13 transiting star-planet system as a test case for the
recently developed BEER algorithm (Faigler & Mazeh 2011), aimed at identifying
non-transiting low-mass companions by detecting the photometric variability
induced by the companion along its orbit. Such photometric variability is
generated by three mechanisms, including the beaming effect, tidal ellipsoidal
distortion, and reflection/heating. We use data from three Kepler quarters,
from the first year of the mission, while ignoring measurements within the
transit and occultation, and show that the planet's ephemeris is clearly
detected. We fit for the amplitude of each of the three effects and use the
beaming effect amplitude to estimate the planet's minimum mass, which results
in M_p sin i = 9.2 +/- 1.1 M_J (assuming the host star parameters derived by
Szabo et al. 2011). Our results show that non-transiting star-planet systems
similar to KOI-13.01 can be detected in Kepler data, including a measurement of
the orbital ephemeris and the planet's minimum mass. Moreover, we derive a
realistic estimate of the amplitudes uncertainties, and use it to show that
data obtained during the entire lifetime of the Kepler mission, of 3.5 years,
will allow detecting non-transiting close-in low-mass companions orbiting
bright stars, down to the few Jupiter mass level. Data from the Kepler Extended
Mission, if funded by NASA, will further improve the detection capabilities.Comment: Accepted to AJ on October 4, 2011. Kepler Q5 Long Cadence data will
become publicly available on MAST by October 23. Comments welcome (V2: minor
changes, to reflect proof corrections
Short-term emission line and continuum variations in Mrk110
We present results of a variability campaign of Mrk110 performed with the
9.2-m Hobby-Eberly Telescope (HET) at McDonald Observatory. The high S/N
spectra cover most of the optical range. They were taken from 1999 November
through 2000 May. The average interval between the observations was 7.3 days
and the median interval was only 3.0 days. Mrk110 is a narrow-line Seyfert 1
galaxy. During our campaign the continuum flux was in a historically low stage.
Considering the delays of the emission lines with respect to the continuum
variations we could verify an ionization stratification of the BLR. We derived
virial masses of the central black hole from the radial distances of the
different emission lines and from their widths. The calculated central masses
agree within 20%. Furthermore, we identified optical HeI singlet emission lines
emitted in the broad-line region. The observed line fluxes agree with
theoretical predictions. We show that a broad wing on the red side of the
[OIII]5007 line is caused by the HeI singlet line at 5016A.Comment: 11 pages, 16 figures, A&A Latex. Accepted for publication in A&A Main
Journa
Hubble Space Telescope Observations of UV Oscillations in WZ Sagittae During the Decline from Outburst
We present a time series analysis of Hubble Space Telescope observations of
WZ Sge obtained in 2001 September, October, November and December as WZ Sge
declined from its 2001 July superoutburst. Previous analysis of these data
showed the temperature of the white dwarf decreased from ~29,000 K to ~18,000
K. In this study we binned the spectra over wavelength to yield ultraviolet
light curves at each epoch that were then analyzed for the presence of the
well-known 27.87 s and 28.96 s oscillations. We detect the 29 s periodicity at
all four epochs, but the 28 s periodicity is absent. The origin of these
oscillations has been debated since their discovery in the 1970s and competing
hypotheses are based on either white dwarf non-radial g-mode pulsations or
magnetically-channelled accretion onto a rotating white dwarf. By analogy with
the ZZ Ceti stars, we argue that the non-radial g-mode pulsation model demands
a strong dependence of pulse period on the white dwarf's temperature. However,
these observations show the 29 s oscillation is independent of the white
dwarf's temperature. Thus we reject the white dwarf non-radial g-mode pulsation
hypothesis as the sole origin of the oscillations. It remains unclear if
magnetically-funnelled accretion onto a rapidly rotating white dwarf (or belt
on the white dwarf) is responsible for producing the oscillations. We also
report the detection of a QPO with period ~18 s in the September light curve.
The amplitudes of the 29 s oscillation and the QPO vary erratically on short
timescales and are not correlated with the mean system brightness nor with each
other.Comment: 20 pages, 3 figures, 1 table; accepted for publication in Ap
On the Reliability of Cross Correlation Function Lag Determinations in Active Galactic Nuclei
Many AGN exhibit a highly variable luminosity. Some AGN also show a
pronounced time delay between variations seen in their optical continuum and in
their emission lines. In effect, the emission lines are light echoes of the
continuum. This light travel-time delay provides a characteristic radius of the
region producing the emission lines. The cross correlation function (CCF) is
the standard tool used to measure the time lag between the continuum and line
variations. For the few well-sampled AGN, the lag ranges from 1-100 days,
depending upon which line is used and the luminosity of the AGN. In the best
sampled AGN, NGC 5548, the H_beta lag shows year-to-year changes, ranging from
about 8.7 days to about 22.9 days over a span of 8 years. In this paper it is
demonstrated that, in the context of AGN variability studies, the lag estimate
using the CCF is biased too low and subject to a large variance. Thus the
year-to-year changes of the measured lag in NGC 5548 do not necessarily imply
changes in the AGN structure. The bias and large variance are consequences of
finite duration sampling and the dominance of long timescale trends in the
light curves, not due to noise or irregular sampling. Lag estimates can be
substantially improved by removing low frequency power from the light curves
prior to computing the CCF.Comment: To appear in the PASP, vol 111, 1999 Nov; 37 pages; 10 figure
New path description for the M(k+1,2k+3) models and the dual Z_k graded parafermions
We present a new path description for the states of the non-unitary
M(k+1,2k+3) models. This description differs from the one induced by the
Forrester-Baxter solution, in terms of configuration sums, of their
restricted-solid-on-solid model. The proposed path representation is actually
very similar to the one underlying the unitary minimal models M(k+1,k+2), with
an analogous Fermi-gas interpretation. This interpretation leads to fermionic
expressions for the finitized M(k+1,2k+3) characters, whose infinite-length
limit represent new fermionic characters for the irreducible modules. The
M(k+1,2k+3) models are also shown to be related to the Z_k graded parafermions
via a (q to 1/q) duality transformation.Comment: 43 pages (minor typo corrected and minor rewording in the
introduction
The architecture of the hierarchical triple star KOI 928 from eclipse timing variations seen in Kepler photometry
We present a hierarchical triple star system (KIC 9140402) where a low mass
eclipsing binary orbits a more massive third star. The orbital period of the
binary (4.98829 Days) is determined by the eclipse times seen in photometry
from NASA's Kepler spacecraft. The periodically changing tidal field, due to
the eccentric orbit of the binary about the tertiary, causes a change in the
orbital period of the binary. The resulting eclipse timing variations provide
insight into the dynamics and architecture of this system and allow the
inference of the total mass of the binary ()
and the orbital parameters of the binary about the central star.Comment: Submitted to MNRAS Letters. Additional tables with eclipse times are
included here. The Kepler data that was used for the analysis of this system
(Q1 through Q6) will be available on MAST after June 27, 201
- …