We present a new path description for the states of the non-unitary
M(k+1,2k+3) models. This description differs from the one induced by the
Forrester-Baxter solution, in terms of configuration sums, of their
restricted-solid-on-solid model. The proposed path representation is actually
very similar to the one underlying the unitary minimal models M(k+1,k+2), with
an analogous Fermi-gas interpretation. This interpretation leads to fermionic
expressions for the finitized M(k+1,2k+3) characters, whose infinite-length
limit represent new fermionic characters for the irreducible modules. The
M(k+1,2k+3) models are also shown to be related to the Z_k graded parafermions
via a (q to 1/q) duality transformation.Comment: 43 pages (minor typo corrected and minor rewording in the
introduction