1,240 research outputs found

    Entropy production by resonance decays

    Get PDF
    We investigate entropy production for an expanding system of particles and resonances with isospin symmetry -- in our case pions and ρ\rho mesons -- within the framework of relativistic kinetic theory. A cascade code to simulate the kinetic equations is developed and results for entropy production and particle spectra are presented.Comment: 17 pages, 10 ps-figures included, only change: preprint number adde

    Pion-Production in Heavy-Ion Collisions at SIS energies

    Full text link
    We investigate the production of pions in heavy-ion collisions in the energy range of 11 - 22 GeV/A. The dynamics of the nucleus-nucleus collisions is described by a set of coupled transport equations of the Boltzmann-Uehling-Uhlenbeck type for baryons and mesons. Besides the N(938)N(938) and the Δ(1232)\Delta(1232) we also take into account nucleon resonances up to masses of 1.9GeV/c21.9 GeV/c^2 as well as π\pi-, η\eta- and ρ\rho-mesons. We study in detail the influence of the higher baryonic resonances and the 2π2\pi-production channels (NNNNππNN\to NN \pi\pi) on the pion spectra in comparison to π\pi^- data from Ar+KClAr + KCl collisions at 1.81.8 GeV/A and π0\pi^0-data for Au+AuAu+Au at 1.0 GeV/A. We, furthermore, present a detailed comparison of differential pion angular distributions with the BEVALAC data for Ar + KCl at 1.8 GeV/A. The general agreement obtained indicates that the overall reactions dynamics is well described by our novel transport approach.Comment: 31 pages, 18 figures (inlcuded), to appear in Z. Phys.

    Nuclear Flow in Consistent Boltzmann Algorithm Models

    Get PDF
    We investigate the stochastic Direct Simulation Monte Carlo method (DSMC) for numerically solving the collision-term in heavy-ion transport theories of the Boltzmann-Uehling-Uhlenbeck (BUU) type. The first major modification we consider is changes in the collision rates due to excluded volume and shadowing/screening effects (Enskog theory). The second effect studied by us is the inclusion of an additional advection term. These modifications ensure a non-vanishing second virial and change the equation of state for the scattering process from that of an ideal gas to that of a hard-sphere gas. We analyse the effect of these modifications on the calculated value of directed nuclear collective flow in heavy ion collisions, and find that the flow slightly increases.Comment: 12 pages, REVTeX, figures available in PostScript from the authors upon reques

    Kinetic Properties of a Bose-Einstein Gas at Finite Temperature

    Full text link
    We study, in the framework of the Boltzmann-Nordheim equation (BNE), the kinetic properties of a boson gas above the Bose-Einstein transition temperature TcT_c. The BNE is solved numerically within a new algorithm, that has been tested with exact analytical results for the collision rate of an homogeneous system in thermal equilibrium. In the classical regime (T>6 TcT > 6~ T_c), the relaxation time of a quadrupolar deformation in momentum space is proportional to the mean free collision time τrelaxT1/2\tau_{relax} \sim T^{-1/2}. Approaching the critical temperature (Tc<T<2.7 TcT_c < T < 2.7~ T_c), quantum statistic effects in BNE become dominant, and the collision rate increases dramatically. Nevertheless, this does not affect the relaxation properties of the gas that depend only on the spontaneous collision term in BNE. The relaxation time τrelax\tau_{relax} is proportional to (TTc)1/2(T - T_c)^{-1/2}, exhibiting a critical slowing down. These phenomena can be experimentally confirmed looking at the damping properties of collective motions induced on trapped atoms. The possibility to observe a transition from collisionless (zero-sound) to hydrodynamic (first-sound) is finally discussed.Comment: RevTeX, 5 figures. Submitted to Phys. Rev.

    Low energy kaon photoproduction from nuclei

    Get PDF
    We study K+K^+-meson production in γA\gamma{A} interaction at energies below the reaction threshold in free space. The Thomas-Fermi and spectral function approaches are used for the calculations of the production process. It is found that the measurement of the differential spectra may allow to reconstruct the production mechanism and to investigate the dispersion relations entering the production vertex. It is shown that the contribution from secondary pion induced reactions to the total kaon photoproduction is negligible for Eγ<E_\gamma{<}1.2 GeV so that strangeness production at low energies is sensitive to the nuclear spectral function.Comment: 20 pages, espcrc1, including 12 figures, to appear in Nucl. Phys.

    Heavy Meson Production in Proton-Nucleus Reactions with Empirical Spectral Functions

    Get PDF
    We study the production of K+,ρ,ωK^+, \rho, \omega and ϕ\phi mesons in p+12Cp + ^{12}C reactions on the basis of empirical spectral functions. The high momentum, high removal energy part of the spectral function is found to be negligible in all cases close to the absolute threshold. Furthermore, the two-step process (pNπNN;πNN+K+,ρ,ω,ϕpN \rightarrow \pi N N; \pi N \rightarrow N + K^+, \rho, \omega, \phi) dominates the cross section at threshold energies in line with earlier calculations based on the folding model.Comment: 18 pages, LaTeX, plus 14 postscript figures, submitted to Z. Phys.

    Constraining the Radii of Neutron Stars with Terrestrial Nuclear Laboratory Data

    Full text link
    Neutron star radii are primarily determined by the pressure of isospin asymmetric matter which is proportional to the slope of the nuclear symmetry energy. Available terrestrial laboratory data on the isospin diffusion in heavy-ion reactions at intermediate energies constrain the slope of the symmetry energy. Using this constraint, we show that the radius (radiation radius) of a 1.4 solar mass neutron star is between 11.5 (14.4) and 13.6 (16.3) km.Comment: 11 pages, 3 figures; version to be published in Phys. Lett.

    Maximum Azimuthal Anisotropy of Neutrons from Nb-Nb Collisions at 400 AMeV and the Nuclear Equation of State

    Get PDF
    We measured the first azimuthal distributions of triple--differential cross sections of neutrons emitted in heavy-ion collisions, and compared their maximum azimuthal anisotropy ratios with Boltzmann--Uehling--Uhlenbeck (BUU) calculations with a momentum-dependent interaction. The BUU calculations agree with the triple- and double-differential cross sections for positive rapidity neutrons emitted at polar angles from 7 to 27 degrees; however, the maximum azimuthal anisotropy ratio for these free neutrons is insensitive to the size of the nuclear incompressibility modulus K characterizing the nuclear matter equation of state.Comment: Typeset using ReVTeX, with 3 ps figs., uuencoded and appende

    Neutrons from multiplicity-selected La-La and Nb-Nb collisions at 400A MeV and La-La collisions at 250A MeV

    Full text link
    Triple-differential cross sections for neutrons from high-multiplicity La-La collisions at 250 and 400 MeV per nucleon and Nb-Nb collisions at 400 MeV per nucleon were measured at several polar angles as a function of the azimuthal angle with respect to the reaction plane of the collision. The reaction plane was determined by a transverse-velocity method with the capability of identifying charged-particles with Z=1, Z=2, and Z > 2. The flow of neutrons was extracted from the slope at mid-rapidity of the curve of the average in-plane momentum vs the center-of-mass rapidity. The squeeze-out of the participant neutrons was observed in a direction normal to the reaction plane in the normalized momentum coordinates in the center-of-mass system. Experimental results of the neutron squeeze-out were compared with BUU calculations. The polar-angle dependence of the maximum azimuthal anisotropy ratio r(θ)r(\theta) was found to be insensitive to the mass of the colliding nuclei and the beam energy. Comparison of the observed polar-angle dependence of the maximum azimuthal anisotropy ratio r(θ)r(\theta) with BUU calculations for free neutrons revealed that r(θ)r(\theta) is insensitive also to the incompressibility modulus in the nuclear equation of state.Comment: ReVTeX, 16 pages, 17 figures. To be published in Physical Review
    corecore