8,400 research outputs found

    Comment on Bramwell et al, "Universal Fluctuations in Correlated Systems"

    Full text link
    This is a comment on "Universal Fluctuations in Correlated Systems", by Bramwell et al, Phys. Rev. Lett., 84, 3744 (2000.Comment: To appear in Phys. Rev. Let

    What can we infer about the underlying physics from burst distributions observed in an RMHD simulation ?

    Full text link
    We determine that the sizes of bursts in mean-square current density in a reduced magnetohydrodynamic (RMHD)simulation follow power-law probability density function (PDF). The PDFs for burst durations and waiting time between bursts are clearly not exponential and could also be power-law. This suffices to distinguish their behaviour from the original Bak et al. sandpile model which had exponential waiting time PDFs. However, it is not sufficient to distinguish between turbulence, some other SOC-like models, and other red noise sources.Comment: In press, Planetary and Space Science. Proceedings of a session at European Geophysical Society General Assembly, Nice, 200

    Power law burst and inter-burst interval distributions in the solar wind: turbulence or dissipative SOC ?

    Full text link
    We calculate for the first time the probability density functions (PDFs) P of burst energy e, duration T and inter-burst interval tau for a known turbulent system in nature. Bursts in the earth-sun component of the Poynting flux at 1 AU in the solar wind were measured using the MFI and SWE experiments on the NASA WIND spacecraft. We find P(e) and P(T) to be power laws, consistent with self-organised criticality (SOC). We find also a power law form for P(tau) that distinguishes this turbulent cascade from the exponential P(tau) of ideal SOC, but not from some other SOC-like sandpile models. We discuss the implications for the relation between SOC and turbulence.Comment: 3 pages, 1 figure. Submitted to PRL on 25th February 2000. Revised version re-submitted on 9th May 2000. Second revised version submitted Phys. Rev. E on 26th June, 200

    Optimal Moments for the Analysis of Peculiar Velocity Surveys

    Get PDF
    We present a new method for the analysis of peculiar velocity surveys which removes contributions to velocities from small scale, nonlinear velocity modes while retaining information about large scale motions. Our method utilizes Karhunen--Lo\`eve methods of data compression to construct a set of moments out of the velocities which are minimally sensitive to small scale power. The set of moments are then used in a likelihood analysis. We develop criteria for the selection of moments, as well as a statistic to quantify the overall sensitivity of a set of moments to small scale power. Although we discuss our method in the context of peculiar velocity surveys, it may also prove useful in other situations where data filtering is required.Comment: 25 Pages, 3 figures. Submitted to Ap

    Extreme-value statistics from Lagrangian convex hull analysis for homogeneous turbulent Boussinesq convection and MHD convection

    Get PDF
    We investigate the utility of the convex hull of many Lagrangian tracers to analyze transport properties of turbulent flows with different anisotropy. In direct numerical simulations of statistically homogeneous and stationary Navier-Stokes turbulence, neutral fluid Boussinesq convection, and MHD Boussinesq convection a comparison with Lagrangian pair dispersion shows that convex hull statistics capture the asymptotic dispersive behavior of a large group of passive tracer particles. Moreover, convex hull analysis provides additional information on the sub-ensemble of tracers that on average disperse most efficiently in the form of extreme value statistics and flow anisotropy via the geometric properties of the convex hulls. We use the convex hull surface geometry to examine the anisotropy that occurs in turbulent convection. Applying extreme value theory, we show that the maximal square extensions of convex hull vertices are well described by a classic extreme value distribution, the Gumbel distribution. During turbulent convection, intermittent convective plumes grow and accelerate the dispersion of Lagrangian tracers. Convex hull analysis yields information that supplements standard Lagrangian analysis of coherent turbulent structures and their influence on the global statistics of the flow.Comment: 18 pages, 10 figures, preprin

    La unidad del pensamiento de Popper

    Get PDF
    Fil: Watkins, J. W. N. London School of Economics. Department of Philosophy, Logic and Scientific Method. Londres, Gran Bretañ
    corecore