849 research outputs found
Greenhouse gas emissions from Indian rice fields: calibration and upscaling using the DNDC model
International audienceThe Denitrification and Decomposition (DNDC) model was evaluated for its ability to simulate methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) emissions from Indian rice fields with various management practices. The model was calibrated and validated for field experiments in New Delhi, India. The observed yield, N uptake and greenhouse gas (GHG) emissions were in good agreement with the values predicted by the model. The model was then applied for estimation of GHG emissions from rice fields in India using a newly compiled soil/climate/land use database. Continuous flooding of rice fields (42.25 million ha) resulted in annual net emissions of 1.07-1.10, 0.04-0.05 and 21.16-60.96 Tg of CH4-C, N2O-N and CO2-C, respectively, with a cumulated global warming potential (GWP) of 130.93-272.83 Tg CO2 equivalent. Intermittent flooding of rice fields reduced annual net emissions to 0.12-0.13 Tg CH4-C and 16.66-48.80 Tg CO2-C while N2O emission increased to 0.05-0.06 Tg N2O-N. The GWP, however, reduced to 91.73-211.80 Tg CO2 equivalent. The study suggested that the model could be applied for estimating the GHG emissions and the influences of agronomic management, soil and climatic parameters on the GHG emissions from rice fields in India
Potential of alternate wetting and drying irrigation practices for the mitigation of ghg emissions from rice fields: Two cases in central luzon (philippines)
Reducing methane (CH) emission from paddy rice production is an important target for many Asian countries in order to comply with their climate policy commitments. National greenhouse gas (GHG) inventory approaches like the Tier-2 approach of the Intergovernmental Panel on Climate Change (IPCC) are useful to assess country-scale emissions from the agricultural sector. In paddy rice, alternate wetting and drying (AWD) is a promising and well-studied water management technique which, as shown in experimental studies, can effectively reduce CH) emissions. However, so far little is known about GHG emission rates under AWD when the technique is fully controlled by farmers. This study assesses CH) and nitrous oxide (N)O) fluxes under continuous flooded (CF) and AWD treatments for seven subsequent seasons on farmers’ fields in a pumped irrigation system in Central Luzon, Philippines. Under AWD management, CH) emissions were substantially reduced (73% in dry season (DS), 21% in wet season (WS)). In all treatments, CH) is the major contributor to the total GHG emission and is, thus, identified as the driving force to the global warming potential (GWP). The contribution of N)O emissions to the GWP was higher in CF than in AWD, however, these only offset 15% of the decrease in CH) emission and, therefore, did not jeopardize the strong reduction in the GWP. The study proves the feasibility of AWD under farmers’ management as well as the intended mitigation effect. Resulting from this study, it is recommended to incentivize dissemination strategies in order to improve the effectiveness of mitigation initiatives. A comparison of single CH) emissions to calculated emissions with the IPCC Tier-2 inventory approach identified that, although averaged values showed a sufficient degree of accuracy, fluctuations for single measurement points have high variation which limit the use of the method for field-level assessments
Varietal effects on methane intensity of paddy fields under different irrigation management
Alternate wetting and drying irrigation (AWD) has been shown to decrease water use and trace gas emissions from paddy fields. Whereas genotypic water use shows little variation, it has been shown that rice varieties differ in the magnitude of their methane emissions. Management and variety-related emission factors have been proposed for modelling the impact of paddy production on climate change; however, the magnitude of a potential reduction in greenhouse gas emissions by changing varieties has not yet been fully assessed. AWD has been shown to affect genotypic yields and high-yielding varieties suffer the greatest loss when grown under AWD. The highest yielding varieties may not have the highest methane emissions; thus, a potential yield loss could be compensated by a larger reduction in methane emissions. However, AWD can only be implemented under full control of irrigation water, leaving the rainy seasons with little scope to reduce methane emissions from paddy fields. Employing low-emitting varieties during the rainy season may be an option to reduce methane emissions but may compromise farmers’ income if such varieties perform less well than the current standard. Methane emissions and rice yields were determined in field trials over two consecutive winter/spring seasons with continuously flooded and AWD irrigation treatments for 20 lowland rice varieties in the Mekong Delta of Vietnam. Based on the results, this paper investigates the magnitude of methane savings through varietal choice for both AWD and continuous flooding in relation to genotypic yields and explores potential options for compensating farmers’ mitigation efforts
Greenhouse gas emissions from Indian rice fields: calibration and upscaling using the DNDC model
The Denitrification and Decomposition (DNDC) model was evaluated for its ability to simulate methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) emissions from Indian rice fields with various management practices. The model was calibrated and validated for field experiments in New Delhi, India. The observed yield, N uptake and greenhouse gas (GHG) emissions were in good agreement with the values predicted by the model. The model was then applied for estimation of GHG emissions from rice fields in India using a newly compiled soil/climate/land use database. Continuous flooding of rice fields (42.25 million ha) resulted in annual net emissions of 1.07-1.10, 0.04-0.05 and 21.16-60.96 Tg of CH4-C, N2O-N and CO2-C, respectively, with a cumulated global warming potential (GWP) of 130.93-272.83 Tg CO2 equivalent. Intermittent flooding of rice fields reduced annual net emissions to 0.12-0.13 Tg CH4-C and 16.66-48.80 Tg CO2-C while N2O emission increased to 0.05-0.06 Tg N2O-N. The GWP, however, reduced to 91.73-211.80 Tg CO2 equivalent. The study suggested that the model could be applied for estimating the GHG emissions and the influences of agronomic management, soil and climatic parameters on the GHG emissions from rice fields in India
Biomechanical analysis of temporomandibular joint dynamics based on real-time magnetic resonance imaging
Aim: The traditional hinge axis theory of temporomandibular joint (TMJ) dynamics is increasingly being replaced by the theory of instantaneous centers of rotation (ICR). Typically, ICR determinations are based on theoretical calculations or three-dimensional approximations of finite element models. Materials and methods: With the advent of real-time magnetic resonance imaging (MRI), natural physiologic movements of the TMJ may be visualized with 15 frames per second. The present study employs real-time MRI to analyze the TMJ biomechanics of healthy volunteers during mandibular movements, with a special emphasis on horizontal condylar inclination (HCI) and ICR pathways. The Wilcoxon rank sum test was used to comparatively analyze ICR pathways of mandibular opening and closure. Results: Mean HCI was 34.8 degrees (± 11.3 degrees) and mean mandibular rotation was 26.6 degrees (± 7.2 degrees). Within a mandibular motion of 10 to 30 degrees, the resulting x- and y-translation during opening and closure of the mandible differed significantly (10 to 20 degrees, x: P = 0.02 and y: P 30 degrees showed no significant differences in x- and y-translation. Near occlusion movements differed only for y-translation (P < 0.01). Conclusion: Real-time MRI facilitates the direct recording of TMJ structures during physiologic mandibular movements. The present findings support the theory of ICR. Statistics confirmed that opening and closure of the mandible follow different ICR pathways, which might be due to muscular activity discrepancies during different movement directions. ICR pathways were similar within maximum interincisal distance (MID) and near occlusion (NO), which might be explained by limited extensibility of tissue fibers (MID) and tooth contact (NO), respectively
Plant traits influencing greenhouse gas emission potential and assessment of technical options for emission screening with large number of rice varieties
Methane (CH4) is a major greenhouse gas (GHG), which accounts for 16% of the global GHG effect. In the agriculture sector, rice cultivation substantially contributes 10% of all anthropogenic CH4 emissions, thus the importance of determining the variables that influence and/or control CH4 production in rice fields.
Over the last decades, various studies reported differences in the emission potential of CH4 of different rice cultivars. However, physiological plant traits responsible for such differences are still unknown. A literature review was therefore conducted to collect relevant studies, which examined the differences in CH4 emission potential of different rice cultivars.
While GHG emission studies from rice are typically done through ‘closed chamber’ measurements, the assessment and sampling of CH4 emissions from large numbers of rice cultivars (>100) pose a challenge in terms of management of sampling and experimental design.
Therefore, this study has developed recommendations for screening a large number of rice varieties to identify cultivars with low CH4 emission potential. A new concept and two practical approaches are presented
Introducing a new tool for greenhouse gas calculation tailored for cropland: rationale, operational framework and potential application
The new GHG calculator named SECTOR (Source-selective and Emission-adjusted GHG CalculaTOR for Cropland) is based on the IPCC Tier 2 approach for rice as well as other crops. The new features of SECTOR facilitate high flexibility in terms of entering newly obtained emission factors, easy data transfer from crop statistics for entering activity data and detailed specifications of GHG scenarios. A new procedure of entering frequency-based data on current water management practices was also developed. Moreover, the tool allows deviating from the 2006 IPCC Guidelines by considering field records with high background levels of Nâ‚‚O emissions in the overall assessment of GHG emissions. This article assesses different applications of the tool, namely as add-ons to field measurements, for GHG calculation at national/sectorial scale and within measurement, reporting and verification of development projects. SECTOR is downloadable in the form of templates that can be used to develop custom versions with varying levels of disaggregated data entries at different scales. A case study for rice production in one Vietnamese province demonstrates the potential to display GHG results in combination with GIS. SECTOR can easily be adjusted to incorporate new emission factors and calculation procedures expected in forthcoming revisions of the IPCC Guidelines
- …