16 research outputs found

    Saponin-based adjuvants induce cross-presentation in dendritic cells by intracellular lipid body formation

    Get PDF
    Saponin-based adjuvants (SBAs) are being used in animal and human (cancer) vaccines, as they induce protective cellular immunity. Their adjuvant potency is a factor of inflammasome activation and enhanced antigen cross-presentation by dendritic cells (DCs), but how antigen cross-presentation is induced is not clear. Here we show that SBAs uniquely induce intracellular lipid bodies (LBs) in the CD11b+ DC subset in vitro and in vivo. Using genetic and pharmacological interference in models for vaccination and in situ tumour ablation, we demonstrate that LB induction is causally related to the saponin- dependent increase in cross-presentation and T-cell activation. These findings link adjuvant activity to LB formation, aid the application of SBAs as a cancer vaccine component, and will stimulate development of new adjuvants enhancing T-cell-mediated immunity

    TNPO2 variants associate with human developmental delays, neurologic deficits, and dysmorphic features and alter TNPO2 activity in Drosophila

    Get PDF
    Transportin-2 (TNPO2) mediates multiple pathways including non-classical nucleocytoplasmic shuttling of >60 cargoes, such as developmental and neuronal proteins. We identified 15 individuals carrying de novo coding variants in TNPO2 who presented with global developmental delay (GDD), dysmorphic features, ophthalmologic abnormalities, and neurological features. To assess the nature of these variants, functional studies were performed in Drosophila. We found that fly dTnpo (orthologous to TNPO2) is expressed in a subset of neurons. dTnpo is critical for neuronal maintenance and function as downregulating dTnpo in mature neurons using RNAi disrupts neuronal activity and survival. Altering the activity and expression of dTnpo using mutant alleles or RNAi causes developmental defects, including eye and wing deformities and lethality. These effects are dosage dependent as more severe phenotypes are associated with stronger dTnpo loss. Interestingly, similar phenotypes are observed with dTnpo upregulation and ectopic expression of TNPO2, showing that loss and gain of Transportin activity causes developmental defects. Further, proband-associated variants can cause more or less severe developmental abnormalities compared to wild-type TNPO2 when ectopically expressed. The impact of the variants tested seems to correlate with their position within the protein. Specifically, those that fall within the RAN binding domain cause more severe toxicity and those in the acidic loop are less toxic. Variants within the cargo binding domain show tissue-dependent effects. In summary, dTnpo is an essential gene in flies during development and in neurons. Further, proband-associated de novo variants within TNPO2 disrupt the function of the encoded protein. Hence, TNPO2 variants are causative for neurodevelopmental abnormalities

    Homocysteine-induced cardiomyocyte apoptosis and plasma membrane flip-flop are independent of S-adenosylhomocysteine: a crucial role for nuclear p47(phox).

    Get PDF
    Item does not contain fulltextWe previously found that homocysteine (Hcy) induced plasma membrane flip-flop, apoptosis, and necrosis in cardiomyocytes. Inactivation of flippase by Hcy induced membrane flip-flop, while apoptosis was induced via a NOX2-dependent mechanism. It has been suggested that S-adenosylhomocysteine (SAH) is the main causative factor in hyperhomocysteinemia (HHC)-induced pathogenesis of cardiovascular disease. Therefore, we evaluated whether the observed cytotoxic effect of Hcy in cardiomyocytes is SAH dependent. Rat cardiomyoblasts (H9c2 cells) were treated under different conditions: (1) non-treated control (1.5 nM intracellular SAH with 2.8 muM extracellular L -Hcy), (2) incubation with 50 muM adenosine-2,3-dialdehyde (ADA resulting in 83.5 nM intracellular SAH, and 1.6 muM extracellular L -Hcy), (3) incubation with 2.5 mM D, L -Hcy (resulting in 68 nM intracellular SAH and 1513 muM extracellular L -Hcy) with or without 10 muM reactive oxygen species (ROS)-inhibitor apocynin, and (4) incubation with 100 nM, 10 muM, and 100 muM SAH. We then determined the effect on annexin V/propodium iodide positivity, flippase activity, caspase-3 activity, intracellular NOX2 and p47(phox) expression and localization, and nuclear ROS production. In contrast to Hcy, ADA did not induce apoptosis, necrosis, or membrane flip-flop. Remarkably, both ADA and Hcy induced a significant increase in nuclear NOX2 expression. However, in contrast to ADA, Hcy additionally induced nuclear p47(phox) expression, increased nuclear ROS production, and inactivated flippase. Incubation with SAH did not have an effect on cell viability, nor on flippase activity, nor on nuclear NOX2-, p47phox expression or nuclear ROS production. HHC-induced membrane flip-flop and apoptosis in cardiomyocytes is due to increased Hcy levels and not primarily related to increased intracellular SAH, which plays a crucial role in nuclear p47(phox) translocation and subsequent ROS production.1 december 201

    Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa

    Get PDF

    In vivo MR guided boiling histotripsy in a mouse tumor model evaluated by MRI and histopathology

    No full text
    Boiling histotripsy (BH) is a new high intensity focused ultrasound (HIFU) ablation technique to mechanically fragmentize soft tissue into submicrometer fragments. So far, ultrasound has been used for BH treatment guidance and evaluation. The in vivo histopathological effects of this treatment are largely unknown. Here, we report on an MR guided BH method to treat subcutaneous tumors in a mouse model. The treatment effects of BH were evaluated one hour and four days later with MRI and histopathology, and compared with the effects of thermal HIFU (T-HIFU). The lesions caused by BH were easily detected with T2w imaging as a hyper-intense signal area with a hypo-intense rim. Histopathological evaluation showed that the targeted tissue was completely disintegrated and that a narrow transition zone (2w imaging and H&E stained sections, making T2w imaging a suitable method for treatment evaluation during or directly after BH. After T-HIFU, contrast enhanced imaging was required for adequate detection of the ablation zone. On histopathology, an ablation zone with concentric layers was seen after T-HIFU. In line with histopathology, contrast enhanced MRI revealed that after BH or T-HIFU perfusion within the lesion was absent, while after BH in the transition zone some micro-hemorrhaging appeared. Four days after BH, the transition zone with apoptotic cells was histologically no longer detectable, corresponding to the absence of a hypo-intense rim around the lesion in T2w images. This study demonstrates the first results of in vivo BH on mouse tumor using MRI for treatment guidance and evaluation and opens the way for more detailed investigation of the in vivo effects of BH

    Sialic acid blockade suppresses tumor growth by enhancing t-cell–mediated tumor immunity

    No full text
    \u3cp\u3eSialic acid sugars on the surface of cancer cells have emerged as potent immune modulators that contribute to the immunosuppressive microenvironment and tumor immune evasion. However, the mechanisms by which these sugars modulate antitumor immunity as well as therapeutic strategies directed against them are limited. Here we report that intratumoral injections with a sialic acid mimetic Ac53FaxNeu5Ac block tumor sialic acid expression in vivo and suppress tumor growth in multiple tumor models. Sialic acid blockade had a major impact on the immune cell composition of the tumor, enhancing tumor-infiltrating natural killer cell and CD8 \u3csup\u3e+\u3c/sup\u3e T-cell numbers while reducing regulatory T-cell and myeloid regulatory cell numbers. Sialic acid blockade enhanced cytotoxic CD8 \u3csup\u3e+\u3c/sup\u3e T-cell-mediated killing of tumor cells in part by facilitating antigen-specific T-cell-tumor cell clustering. Sialic acid blockade also synergized with adoptive transfer of tumor-specific CD8 \u3csup\u3e+\u3c/sup\u3e T cells in vivo and enhanced CpG immune adjuvant therapy by increasing dendritic cell activation and subsequent CD8 \u3csup\u3e+\u3c/sup\u3e T-cell responses. Collectively, these data emphasize the crucial role of sialic acids in tumor immune evasion and provide proof of concept that sialic acid blockade creates an immune-permissive tumor microenvironment for CD8 \u3csup\u3e+\u3c/sup\u3e T-cell-mediated tumor immunity, either as single treatment or in combination with other immune-based intervention strategies. Significance: Sialic acid sugars function as important modulators of the immunosuppressive tumor microenvironment that limit potent antitumor immunity. \u3c/p\u3

    Tumor ablation plus co-administration of CpG and saponin adjuvants affects IL-1 production and multifunctional T cell numbers in tumor draining lymph nodes

    Get PDF
    Background Tumor ablation techniques, like cryoablation, are successfully used in the clinic to treat tumors. The tumor debris remaining in situ after ablation is a major antigen depot, including neoantigens, which are presented by dendritic cells (DCs) in the draining lymph nodes to induce tumor-specific CD8+ T cells. We have previously shown that co-administration of adjuvants is essential to evoke strong in vivo antitumor immunity and the induction of long-term memory. However, which adjuvants most effectively combine with in situ tumor ablation remains unclear.Methods and results Here, we show that simultaneous administration of cytidyl guanosyl (CpG) with saponin-based adjuvants following cryoablation affects multifunctional T-cell numbers and interleukin (IL)-1 induced polymorphonuclear neutrophil recruitment in the tumor draining lymph nodes, relative to either adjuvant alone. The combination of CpG and saponin-based adjuvants induces potent DC maturation (mainly CpG-mediated), antigen cross-presentation (mainly saponin-based adjuvant mediated), while excretion of IL-1β by DCs in vitro depends on the presence of both adjuvants. Most strikingly, CpG/saponin-based adjuvant exposed DCs potentiate antigen-specific T-cell proliferation resulting in multipotent T cells with increased capacity to produce interferon (IFN)γ, IL-2 and tumor necrosis factor-α in vitro. Also in vivo the CpG/saponin-based adjuvant combination plus cryoablation increased the numbers of tumor-specific CD8+ T cells showing enhanced IFNγ production as compared with single adjuvant treatments.Conclusions Collectively, these data indicate that co-injection of CpG with saponin-based adjuvants after cryoablation induces an increased amount of tumor-specific multifunctional T cells. The combination of saponin-based adjuvants with toll-like receptor 9 adjuvant CpG in a cryoablative setting therefore represents a promising in situ vaccination strategy

    Immune Adjuvant Efficacy of CpG Oligonucleotide in Cancer Treatment Is Founded Specifically upon TLR9 Function in Plasmacytoid Dendritic Cells

    No full text
    Contains fulltext : 95990.pdf (publisher's version ) (Closed access)The differences in function, location, and migratory pattern of conventional dendritic cells (cDC) and plasmacytoid DCs (pDC) not only point to specialized roles in immune responses but also signify additive and interdependent relationships required to clear pathogens. We studied the in vivo requirement of cross-talk between cDCs and pDCs for eliciting antitumor immunity against in situ released tumor antigens in the absence or presence of the Toll-like receptor (TLR) 9 agonist CpG. Previous data indicated that CpG boosted tumor-specific T-cell responses after in vivo tumor destruction and increased survival after tumor rechallenges. The present study shows that cDCs are indispensable for cross-presentation of ablation-released tumor antigens and for the induction of long-term antitumor immunity. Depletion of pDCs or applying this model in type I IFN receptor-deficient mice abrogated CpG-mediated responses. CD8alpha(+) cDCs and the recently identified merocytic cDCs were dependent on pDCs for CpG-induced upregulation of CD80. Moreover, DC transfer studies revealed that merocytic cDCs and CD8alpha(+) cDCs were most susceptible to pDC help and subsequently promoted tumor-free survival in a therapeutic setting. By transferring wild-type pDCs into TLR9-deficient mice, we finally showed that TLR9 expression in pDCs is sufficient to benefit from CpG as an adjuvant. These studies indicate that the efficacy of CpG in cancer immunotherapy is dependent on cross-talk between pDCs and specific subsets of cDCs. Cancer Res; 71(20); 6428-37. (c)2011 AACR
    corecore