10 research outputs found

    Transcriptomic analysis of dead end knockout testis reveals germ cell and gonadal somatic factors in Atlantic salmon

    Get PDF
    Sustainability challenges are currently hampering an increase in salmon production. Using sterile salmon can solve problems with precocious puberty and genetic introgression from farmed escapees to wild populations. Recently sterile salmon was produced by knocking out the germ cell-specific dead end (dnd). Several approaches may be applied to inhibit Dnd function, including gene knockout, knockdown or immunization. Since it is challenging to develop a successful treatment against a gene product already existing in the body, alternative targets are being explored. Germ cells are surrounded by, and dependent on, gonadal somatic cells. Targeting genes essential for the survival of gonadal somatic cells may be good alternative targets for sterility treatments. Our aim was to identify and characterize novel germ cell and gonadal somatic factors in Atlantic salmon.publishedVersio

    Genome editing in food and feed production – implications for risk assessment. Opinion of the Steering Committee of the Norwegian Scientific Committee for Food and Environment

    Get PDF
    Source at https://vkm.no/I denne rapporten vurderer Vitenskapskomiteen for mat og miljø (VKM) utfordringer knyttet til helse- og miljørisikovurdering av genomredigerte organismer til mat- og fôrproduksjon. VKM har gått gjennom veiledningen for risikovurdering av genmodifiserte organismer (GMO) som Den europeiske myndighet for næringsmiddeltrygghet (EFSA) har utviklet, og vurdert om veiledningen også kan brukes til å vurdere risiko ved organismer som er utviklet ved genomredigering. VKM har selv tatt initiativ til denne rapporten.The Norwegian Scientific Committee for Food and Environment (VKM) initiated this work to examine the extent to which organisms developed by genome-editing technologies pose new challenges in terms of risk assessment. This report considers whether the risk assessment guidance on genetically modified organisms, developed by the European Food Safety Authority (EFSA), can be applied to evaluate potential risks of organisms developed by genome editing

    Transcriptomic analysis of dead end knockout testis reveals germ cell and gonadal somatic factors in Atlantic salmon

    Get PDF
    Sustainability challenges are currently hampering an increase in salmon production. Using sterile salmon can solve problems with precocious puberty and genetic introgression from farmed escapees to wild populations. Recently sterile salmon was produced by knocking out the germ cell-specific dead end (dnd). Several approaches may be applied to inhibit Dnd function, including gene knockout, knockdown or immunization. Since it is challenging to develop a successful treatment against a gene product already existing in the body, alternative targets are being explored. Germ cells are surrounded by, and dependent on, gonadal somatic cells. Targeting genes essential for the survival of gonadal somatic cells may be good alternative targets for sterility treatments. Our aim was to identify and characterize novel germ cell and gonadal somatic factors in Atlantic salmon

    Genome editing in food and feed production – implications for risk assessment. Opinion of the Steering Committee of the Norwegian Scientific Committee for Food and Environment

    No full text
    I denne rapporten vurderer Vitenskapskomiteen for mat og miljø (VKM) utfordringer knyttet til helse- og miljørisikovurdering av genomredigerte organismer til mat- og fôrproduksjon. VKM har gått gjennom veiledningen for risikovurdering av genmodifiserte organismer (GMO) som Den europeiske myndighet for næringsmiddeltrygghet (EFSA) har utviklet, og vurdert om veiledningen også kan brukes til å vurdere risiko ved organismer som er utviklet ved genomredigering. VKM har selv tatt initiativ til denne rapporten

    Genome editing in food and feed production – implications for risk assessment. Opinion of the Steering Committee of the Norwegian Scientific Committee for Food and Environment

    Get PDF
    The Norwegian Scientific Committee for Food and Environment (VKM) initiated this work to examine the extent to which organisms developed by genome-editing technologies pose new challenges in terms of risk assessment. This report considers whether the risk assessment guidance on genetically modified organisms, developed by the European Food Safety Authority (EFSA), can be applied to evaluate potential risks of organisms developed by genome editing
    corecore