4,556 research outputs found

    Perinatal Gene Transfer to the Liver

    Get PDF
    The liver acts as a host to many functions hence raising the possibility that any one may be compromised by a single gene defect. Inherited or de novo mutations in these genes may result in relatively mild diseases or be so devastating that death within the first weeks or months of life is inevitable. Some diseases can be managed using conventional medicines whereas others are, as yet, untreatable. In this review we consider the application of early intervention gene therapy in neonatal and fetal preclinical studies. We appraise the tools of this technology, including lentivirus, adenovirus and adeno-associated virus (AAV)-based vectors. We highlight the application of these for a range of diseases including hemophilia, urea cycle disorders such as ornithine transcarbamylase deficiency, organic acidemias, lysosomal storage diseases including mucopolysaccharidoses, glycogen storage diseases and bile metabolism. We conclude by assessing the advantages and disadvantages associated with fetal and neonatal liver gene transfer

    Predicting the visco-elastic properties of polystyrene/SIS composite blends using simple analytical micromechanics models

    Get PDF
    This paper is concerned with the prediction of the viscoelastic properties of rubber filled polymer blends. The question asked was as follows. Can the temperature dependent viscoelastic properties of phase separated polymer blends be adequately predicted using only a rational two phase micromechanics based analytical model with no empirical fitting parameters? In particular using only a knowledge of the individual bulk phase properties and the blend microstructure, but without any further detailed polymer physics knowledge such as the presence of an interphase region or any additional nanoscale structures within the separated rubber phase with the properties different from those of the two bulk phases? Blends of a polystyrene matrix and phase separated rubber inclusions (a polystyrene-polyisoprene-polystyrene triblock polymer (SIS)) were manufactured in a range of blend fractions (up to 20 vol % of the triblock co-polymer). Experimental measurements, for the storage modulus G′ and the loss tangent tanδ, of both the individual phases and the blends, were made using dynamic mechanical tests over a range of temperatures from −50 to +70 °C. Numerical predictions, of the same parameters, were first obtained using the generalised self-consistent Christensen and Lo model which uses a simple representative volume element (RVE) of an isolated sphere of the minority rubber component in a surrounding sheath of polystyrene matrix embedded in a homogeneous effective medium. The agreement between the Christensen and Lo model and the experimental measurements, for G′ and tanδ, was found to be excellent for rubber contents up to 10%. For a 20% rubber content, an improved prediction was obtained by altering the RVE to include the observed effect of having a polystyrene central core in a number of the dispersed rubber zones at this rubber fraction, using the Herve and Zaoui generalization of the Christensen and Lo model. Although conjoined (and therefore non-spherical) zones became more prevalent at the highest rubber content, use of the Tandon and Weng model showed that this shape anisotropy would not be expected to affect the viscoelastic properties

    In Vivo Analysis of Trypanosoma cruzi Persistence Foci at Single-Cell Resolution

    Get PDF
    Infections with Trypanosoma cruzi are usually lifelong despite generating a strong adaptive immune response. Identifying the sites of parasite persistence is therefore crucial to understanding how T. cruzi avoids immune-mediated destruction. However, this is a major technical challenge, because the parasite burden during chronic infections is extremely low. Here, we describe an integrated approach involving comprehensive tissue processing, ex vivo imaging, and confocal microscopy, which allowed us to visualize infected host cells in murine tissue with exquisite sensitivity. Using bioluminescence-guided tissue sampling, with a detection level of 200 parasites, which we term mega-nests. In contrast, during the acute stage, when the total parasite burden is considerably higher and many cells are infected, nests containing >50 parasites are rarely found. In C3H/HeN mice, but not BALB/c mice, we identified skeletal muscle as a major site of persistence during the chronic stage, with most parasites being found in large mega-nests within the muscle fibers. Finally, we report that parasites are also frequently found in the skin during chronic murine infections, often in multiple infection foci. In addition to being a site of parasite persistence, this anatomical reservoir could play an important role in insect-mediated transmission and have implications for drug development.IMPORTANCETrypanosoma cruzi causes Chagas disease, the most important parasitic infection in Latin America. Major pathologies include severe damage to the heart and digestive tract, although symptoms do not usually appear until decades after infection. Research has been hampered by the complex nature of the disease and technical difficulties in locating the extremely low number of parasites. Here, using highly sensitive imaging technology, we reveal the sites of parasite persistence during chronic-stage infections of experimental mice at single-cell resolution. We show that parasites are frequently located in smooth muscle cells in the circular muscle layer of the colon and that skeletal muscle cells and the skin can also be important reservoirs. This information provides a framework for investigating how the parasite is able to survive as a lifelong infection, despite a vigorous immune response. It also informs drug development strategies by identifying tissue sites that must be accessed to achieve a curative outcome

    Waterpipe smoking in students: Prevalence, risk factors, symptoms of addiction, and smoke intake. Evidence from one British university

    Get PDF
    Background: Anecdotal reports suggest waterpipe smoking is becoming common in students in western countries. The aim was to examine prevalence, risk factors, symptoms of addiction, and smoke intake. Methods: This was a cross-sectional survey of students with subsidiary survey of regular waterpipe user and survey of exhaled carbon monoxide (CO) before and after waterpipe smoking in customers of a waterpipe café. 937 students of Birmingham University completed the initial survey with a follow up of 21 regular waterpipe smokers. 63 customers of a waterpipe café near the University completed the study of CO intake. Results: 355 (37.9%, 95% confidence intervals (CI) 34.8 to 41.1%) students had tried waterpipes,the prevalence of trying rising with duration at University. 75 (8.0%, 95%CI 6.4 to 10.0%) were regular smokers, similar to the prevalence of cigarette smoking (9.4%). Although cigarette smoking was the major risk factor for being a regular waterpipe smoker, odds ratio (95%CI) 2.77 (1.52 to 5.06), 65% of waterpipe smokers did not smoke cigarettes. Seven of 21 (33.3%) regular waterpipe smokers experienced cravings. Nearly all regular waterpipe users thought it less harmful than smoking cigarettes. The mean (standard deviation) rise in CO was 37.4 (25.8)ppm, nearly twice as high as a typical cigarette smoker seeking cessation treatment. Conclusion: Waterpipe smoking is a common part of student culture in one British university, as in the Middle East and in the United States. It poses a potential threat to public health, with evidence of dependence and high smoke intake

    Submillimeter Studies of Prestellar Cores and Protostars: Probing the Initial Conditions for Protostellar Collapse

    Full text link
    Improving our understanding of the initial conditions and earliest stages of protostellar collapse is crucial to gain insight into the origin of stellar masses, multiple systems, and protoplanetary disks. Observationally, there are two complementary approaches to this problem: (1) studying the structure and kinematics of prestellar cores observed prior to protostar formation, and (2) studying the structure of young (e.g. Class 0) accreting protostars observed soon after point mass formation. We discuss recent advances made in this area thanks to (sub)millimeter mapping observations with large single-dish telescopes and interferometers. In particular, we argue that the beginning of protostellar collapse is much more violent in cluster-forming clouds than in regions of distributed star formation. Major breakthroughs are expected in this field from future large submillimeter instruments such as Herschel and ALMA.Comment: 12 pages, 9 figures, to appear in the proceedings of the conference "Chemistry as a Diagnostic of Star Formation" (C.L. Curry & M. Fich eds.

    Elevated Paracellular Glucose Flux across Cystic Fibrosis Airway Epithelial Monolayers Is an Important Factor for Pseudomonas aeruginosa Growth.

    Get PDF
    People with cystic fibrosis (CF) who develop related diabetes (CFRD) have accelerated pulmonary decline, increased infection with antibiotic-resistant Pseudomonas aeruginosa and increased pulmonary exacerbations. We have previously shown that glucose concentrations are elevated in airway surface liquid (ASL) of people with CF, particularly in those with CFRD. We therefore explored the hypotheses that glucose homeostasis is altered in CF airway epithelia and that elevation of glucose flux into ASL drives increased bacterial growth, with an effect over and above other cystic fibrosis transmembrane conductance regulator (CFTR)-related ASL abnormalities. The aim of this study was to compare the mechanisms governing airway glucose homeostasis in CF and non-CF primary human bronchial epithelial (HBE) monolayers, under normal conditions and in the presence of Ps. aeruginosa filtrate. HBE-bacterial co-cultures were performed in the presence of 5 mM or 15 mM basolateral glucose to investigate how changes in blood glucose, such as those seen in CFRD, affects luminal Ps. aeruginosa growth. Calu-3 cell monolayers were used to evaluate the potential importance of glucose on Ps. aeruginosa growth, in comparison to other hallmarks of the CF ASL, namely mucus hyperviscosity and impaired CFTR-dependent fluid secretions. We show that elevation of basolateral glucose promotes the apical growth of Ps. aeruginosa on CF airway epithelial monolayers more than non-CF monolayers. Ps. aeruginosa secretions elicited more glucose flux across CF airway epithelial monolayers compared to non-CF monolayers which we propose increases glucose availability in ASL for bacterial growth. In addition, elevating basolateral glucose increased Ps. aeruginosa growth over and above any CFTR-dependent effects and the presence or absence of mucus in Calu-3 airway epithelia-bacteria co-cultures. Together these studies highlight the importance of glucose as an additional factor in promoting Ps. aeruginosa growth and respiratory infection in CF disease

    Characterization of the tumor marker muc16 (ca125) expressed by murine ovarian tumor cell lines and identification of a panel of cross-reactive monoclonal antibodies

    Get PDF
    <p>Abstract</p> <p>Objectives</p> <p>The ovarian tumor marker CA125 is expressed on human MUC16, a cell surface bound mucin that is also shed by proteolytic cleavage. Human MUC16 is overexpressed by ovarian cancer cells. MUC16 facilitates the binding of ovarian tumor cells to mesothelial cells lining the peritoneal cavity. Additionally, MUC16 also is a potent inhibitor of natural killer cell mediated anti-tumor cytotoxic responses. Extensive studies using human as well as murine ovarian tumor cell models are required to clearly define the function of MUC16 in the progression of ovarian tumors. The major objective of this study was to determine if the murine ovarian tumor cells, MOVCAR, express Muc16 and to characterize antibodies that recognize this mucin.</p> <p>Methods</p> <p>RT-PCR analysis was used for detecting the Muc16 message and size exclusion column chromatography for isolating Muc16 produced by MOVCAR cells. Soluble and cell-associated murine Muc16 were analyzed, respectively, by Western blotting and flow cytometry assays using a new panel of antibodies. The presence of N-linked oligosaccharides on murine Muc16 was determined by ConA chromatography.</p> <p>Results</p> <p>We demonstrate that murine Muc16 is expressed by mouse ovarian cancer cells as an ~250 kDa glycoprotein that carries both O-linked and N-linked oligosaccharides. In contrast to human MUC16, the murine ortholog is primarily released from the cells and cannot be detected on the cell surface. Since the released murine Muc16 is not detected by conventional anti-CA125 assays, we have for the first time identified a panel of anti-human MUC16 antibodies that also recognizes the murine counterpart.</p> <p>Conclusion</p> <p>The antibodies identified in this study can be used in future purification of murine Muc16 and exhaustive study of its properties. Furthermore, the initial identification and characterization of murine Muc16 is a vital preliminary step in the development of effective murine models of human ovarian cancer. These models will aid in the further elucidation of the role that human MUC16 plays in the etiology and progression of ovarian tumors.</p

    Screwworms, Cochliomyia hominivorax, Reared for Mass Release Do Not Carry and Spread Foot-and-Mouth Disease Virus and Classical Swine Fever Virus

    Get PDF
    Experiments were done to determine if transporting live screwworms Cochliomyia hominivorax Coquerel (Diptera: Calliphoridae) for developing new strains from countries where foot-and-mouth disease and classical swine fever are endemic, to the mass rearing facilities in Mexico and Panama, may introduce these exotic diseases into these countries. Are screwworms capable of harboring and spreading foot-and-mouth disease virus (FMDV) and classical swine fever virus (CSFV) when they are grown in virus-inoculated larval rearing medium? In one experiment, screwworm larvae were reared in a FMDV-inoculated artificial medium containing either 0.1 % formaldehyde or antibiotics as an antimicrobial agent. In another experiment, larvae were similarly reared in a CSFV-inoculated artificial medium containing 0.1% formaldehyde. In each experiment, samples of larvae and the rearing media were collected daily until pupation occurred. The presence of FMDV was assayed by observing cytopathic effects on cell cultures and a conventional reverse transcription-polymerase chain reaction (RT-PCR); CSFV was assayed using an avidin-biotin complex assay and a conventional RT-PCR. For media containing antibiotics, FMDV was detected in a larval sample collected on day 1 and in media samples on days 1, 2 and 3. No FMDV was detected from larval and media samples collected on all other days. For media containing formaldehyde, FMDV and CSFV were not detectable in larval or media samples collected on all sampling days. These results indicate that FMDV and CSFV cannot survive in rearing medium containing formaldehyde as an antimicrobial agent. Therefore, insects collected in endemic regions and reared using formaldehyde-containing medium for at least one generation at the collection site should be free of FMDV and CSFV and can be transported safely to a strain development/mass rearing facility

    The Phyre2 web portal for protein modeling, prediction and analysis

    Get PDF
    Phyre2 is a suite of tools available on the web to predict and analyze protein structure, function and mutations. The focus of Phyre2 is to provide biologists with a simple and intuitive interface to state-of-the-art protein bioinformatics tools. Phyre2 replaces Phyre, the original version of the server for which we previously published a paper in Nature Protocols. In this updated protocol, we describe Phyre2, which uses advanced remote homology detection methods to build 3D models, predict ligand binding sites and analyze the effect of amino acid variants (e.g., nonsynonymous SNPs (nsSNPs)) for a user's protein sequence. Users are guided through results by a simple interface at a level of detail they determine. This protocol will guide users from submitting a protein sequence to interpreting the secondary and tertiary structure of their models, their domain composition and model quality. A range of additional available tools is described to find a protein structure in a genome, to submit large number of sequences at once and to automatically run weekly searches for proteins that are difficult to model. The server is available at http://www.sbg.bio.ic.ac.uk/phyre2. A typical structure prediction will be returned between 30 min and 2 h after submission
    corecore