9,420 research outputs found

    H ∞  sliding mode observer design for a class of nonlinear discrete time-delay systems: A delay-fractioning approach

    Get PDF
    Copyright @ 2012 John Wiley & SonsIn this paper, the H ∞  sliding mode observer (SMO) design problem is investigated for a class of nonlinear discrete time-delay systems. The nonlinear descriptions quantify the maximum possible derivations from a linear model, and the system states are allowed to be immeasurable. Attention is focused on the design of a discrete-time SMO such that the asymptotic stability as well as the H ∞  performance requirement of the error dynamics can be guaranteed in the presence of nonlinearities, time delay and external disturbances. Firstly, a discrete-time discontinuous switched term is proposed to make sure that the reaching condition holds. Then, by constructing a new Lyapunov–Krasovskii functional based on the idea of ‘delay fractioning’ and by introducing some appropriate free-weighting matrices, a sufficient condition is established to guarantee the desired performance of the error dynamics in the specified sliding mode surface by solving a minimization problem. Finally, an illustrative example is given to show the effectiveness of the designed SMO design scheme

    Robust sliding mode control for discrete stochastic systems with mixed time delays, randomly occurring uncertainties, and randomly occurring nonlinearities

    Get PDF
    This is the post-print version of the paper. The official published version can be accessed from the link below - Copyright @ 2012 IEEEThis paper investigates the robust sliding mode control (SMC) problem for a class of uncertain nonlinear stochastic systems with mixed time delays. Both the sectorlike nonlinearities and the norm-bounded uncertainties enter into the system in random ways, and such randomly occurring uncertainties and randomly occurring nonlinearities obey certain mutually uncorrelated Bernoulli distributed white noise sequences. The mixed time delays consist of both the discrete and the distributed delays. The time-varying delays are allowed in state. By employing the idea of delay fractioning and constructing a new Lyapunov–Krasovskii functional, sufficient conditions are established to ensure the stability of the system dynamics in the specified sliding surface by solving a certain semidefinite programming problem. A full-state feedback SMC law is designed to guarantee the reaching condition. A simulation example is given to demonstrate the effectiveness of the proposed SMC scheme.This work was supported in part by the National Natural Science Foundation of China under Grants 61028008, 60825303 and 60834003, National 973 Project under Grant 2009CB320600, the Fok Ying Tung Education Fund under Grant 111064, the Special Fund for the Author of National Excellent Doctoral Dissertation of China under Grant 2007B4, the Key Laboratory of Integrated Automation for the Process Industry Northeastern University) from the Ministry of Education of China, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Discontinuous Reception for Multiple-Beam Communication

    Get PDF
    This is the final version. Available from IEEE via the DOI in this recordDiscontinuous reception (DRX) techniques have successfully been proposed for energy savings in 4G radio access systems, which are deployed on legacy 2GHz spectrum bands with signal features of omni-directional propagation. In upcoming 5G systems, higher frequency spectrum bands will also be utilized. Unfortunately higher frequency bands encounter more significant path loss, thus requiring directional beamforming to aggregate the radiant signal in a certain direction. We, therefore, propose a DRX scheme for multiple beam (DRXB) communication scenarios. The proposed DRXB scheme is designed to avoid unnecessary energy-and-time-consuming beam-training procedures, which enables longer sleep periods and shorter wake-up latency. We provide an analytical model to investigate the receiver-side energy efficiency and transmission latency of the proposed scheme. Through simulations, our approach is shown to have clear performance improvements over the conventional DRX scheme where beam training is conducted in each DRX cycle.Swedish Research CouncilNational Natural Science Foundation of ChinaEuropean Union Horizon 202

    Buy Now and Price Later: Supply Contracts with Time-Consistent Mean-Variance Financial Hedging

    Get PDF
    We consider a two-stage supply chain comprising one risk-neutral manufacturer (he) and one risk-averse retailer (she), where the manufacturer procures consumption commodities in spot market as major inputs for production and sells the final products to the retailer. The retailer then sells the final products to the market at a stochastic clearance price. We investigate a flexible price contract that allows the manufacturer to determine the product wholesale price, and the retailer to determine the order quantity, based on the future spot price of consumption commodities. Compared with the simple wholesale price contract, a win-win situation can be achieved under the flexible price contract when the manufacturer's postponed processing cost is lower than a threshold. However, under this flexible price contract the retailer may suffer from the commodity price volatility, even if she does not procure the commodities directly. We further investigate how the risk-averse retailer conducts mean-variance financial hedging by purchasing consumption commodity futures contracts. We formulate the problem using a dynamic programming model and derive a closed-form time-consistent financial hedging policy. Through numerical experiments, we show that the commodity price risk from the manufacturer to the retailer is effectively mitigated with the hedging, and the benefits of the flexible price contract are maintained

    Effects of optical beam angle on quantitative optical coherence tomography (OCT) in normal and surface degenerated bovine articular cartilage

    Get PDF
    2010-2011 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Effect of location of opening incision on astigmatic correction after small-incision lenticule extraction

    Get PDF
    published_or_final_versio

    Comparison of 68Ga-DOTANOC with 18F-FDG using PET/MRI imaging in patients with pulmonary tuberculosis

    Get PDF
    We compared the somatostatin analog radioligand, DOTANOC, with FDG, to determine whether there was increased detection of active or sub-clinical lesions in pulmonary tuberculosis (TB) with DOTANOC. Three groups were recruited: (1) active pulmonary TB; (2) IGRA-positive household TB contacts; (3) pneumonia (non-TB). DOTANOC PET/MRI followed by FDG PET/MRI was performed in active TB and pneumonia groups. TB contacts underwent FDG PET/MRI, then DOTANOC PET/MRI if abnormalities were detected. Quantitative and qualitative analyses were performed for total lung and individual lesions. Eight active TB participants, three TB contacts and three pneumonia patients had paired PET/MRI scans. In the active TB group, median SUVmax[FDG] for parenchymal lesions was 7.69 (range 3.00–15.88); median SUVmax[DOTANOC] was 2.59 (1.48–6.40). Regions of tracer uptake were fairly similar for both radioligands, albeit more diffusely distributed in the FDG scans. In TB contacts, two PET/MRIs had parenchymal lesions detected with FDG (SUVmax 5.50 and 1.82), with corresponding DOTANOC uptake < 1. FDG and DOTANOC uptake was similar in pneumonia patients (SUVmax[FDG] 4.17–6.18; SUVmax[DOTANOC] 2.92–4.78). DOTANOC can detect pulmonary TB lesions, but FDG is more sensitive for both active and sub-clinical lesions. FDG remains the preferred ligand for clinical studies, although DOTANOC may provide additional value for pathogenesis studies

    Model Adaptation with Synthetic and Real Data for Semantic Dense Foggy Scene Understanding

    Full text link
    This work addresses the problem of semantic scene understanding under dense fog. Although considerable progress has been made in semantic scene understanding, it is mainly related to clear-weather scenes. Extending recognition methods to adverse weather conditions such as fog is crucial for outdoor applications. In this paper, we propose a novel method, named Curriculum Model Adaptation (CMAda), which gradually adapts a semantic segmentation model from light synthetic fog to dense real fog in multiple steps, using both synthetic and real foggy data. In addition, we present three other main stand-alone contributions: 1) a novel method to add synthetic fog to real, clear-weather scenes using semantic input; 2) a new fog density estimator; 3) the Foggy Zurich dataset comprising 38083808 real foggy images, with pixel-level semantic annotations for 1616 images with dense fog. Our experiments show that 1) our fog simulation slightly outperforms a state-of-the-art competing simulation with respect to the task of semantic foggy scene understanding (SFSU); 2) CMAda improves the performance of state-of-the-art models for SFSU significantly by leveraging unlabeled real foggy data. The datasets and code are publicly available.Comment: final version, ECCV 201
    corecore