This work addresses the problem of semantic scene understanding under dense
fog. Although considerable progress has been made in semantic scene
understanding, it is mainly related to clear-weather scenes. Extending
recognition methods to adverse weather conditions such as fog is crucial for
outdoor applications. In this paper, we propose a novel method, named
Curriculum Model Adaptation (CMAda), which gradually adapts a semantic
segmentation model from light synthetic fog to dense real fog in multiple
steps, using both synthetic and real foggy data. In addition, we present three
other main stand-alone contributions: 1) a novel method to add synthetic fog to
real, clear-weather scenes using semantic input; 2) a new fog density
estimator; 3) the Foggy Zurich dataset comprising 3808 real foggy images,
with pixel-level semantic annotations for 16 images with dense fog. Our
experiments show that 1) our fog simulation slightly outperforms a
state-of-the-art competing simulation with respect to the task of semantic
foggy scene understanding (SFSU); 2) CMAda improves the performance of
state-of-the-art models for SFSU significantly by leveraging unlabeled real
foggy data. The datasets and code are publicly available.Comment: final version, ECCV 201