1,597 research outputs found

    Metasomatized lithospheric mantle for Mesozoic giant gold deposits in the North China craton

    Get PDF
    The origin of giant lode gold deposits of Mesozoic age in the North China craton (NCC) is enigmatic because high-grade metamorphic ancient crust would be highly depleted in gold. Instead, lithospheric mantle beneath the crust is the likely source of the gold, which may have been anomalously enriched by metasomatic processes. However, the role of gold enrichment and metasomatism in the lithospheric mantle remains unclear. Here, we present comprehensive data on gold and platinum group element contents of mantle xenoliths (n = 28) and basalts (n = 47) representing the temporal evolution of the eastern NCC. The results indicate that extensive mantle metasomatism and hydration introduced some gold (<1–2 ppb) but did not lead to a gold-enriched mantle. However, volatile-rich basalts formed mainly from the metasomatized lithospheric mantle display noticeably elevated gold contents as compared to those from the asthenosphere. Combined with the significant inheritance of mantle-derived volatiles in auriferous fluids of ore bodies, the new data reveal that the mechanism for the formation of the lode gold deposits was related to the volatile-rich components that accumulated during metasomatism and facilitated the release of gold during extensional craton destruction and mantle melting. Gold-bearing, hydrous magmas ascended rapidly along translithospheric fault zones and evolved auriferous fluids to form the giant deposits in the crust

    Ubiquitous dendritic olivine constructs initial crystal framework of mafic magma chamber

    Full text link
    peer reviewedLayered intrusions are fossilized mafic magma chambers in the Earth's crust. The pathways that led to crystallization and solidification of layered intrusions have been hotly debated as the growth model of primocrysts (the earliest-formed crystals) in mafic magma chambers remains enigmatic. In this study, we carried out high-resolution elemental mapping of mm-scale olivine primocrysts from the Sept Iles layered intrusion (Canada), the third largest one in the world, with a focus on phosphorus (P) zoning of olivine. Our results reveal that complex P zoning of olivine with intense dissolution textures is ubiquitous in the ∼4.7 km-thick Layered Series of the intrusion. The P-rich zones of olivine are featured with dendritic, hopper and sector-zoned patterns, which are attributed to significant magma undercooling. Thermal modeling based on a 1-D conductive cooling model suggests that initially hot parental magma intruding into cold country rocks would result in high degrees of undercooling (-ΔT >60 °C) in the margins (i.e., floor, roof and sidewalls) of magma chamber, facilitating rapid growth of dendritic olivine, which may be then spread within the magma chamber by dynamic convection and crucial to construct initial crystal framework of a solidifying magma chamber. Additionally, diffusion modeling based on the P gradients in olivine suggests a minimum cooling rate of 2.7 to 3.3×10−3 °C/year in the center of the intrusion, similar to the averaged cooling rate of other layered intrusions (e.g., Bushveld, Stillwater and Skaergaard) reported in previous studies. This indicates that rapid cooling (ca. 10−2 to 10−3 °C/year) at high temperature (>800 °C) may be predominant regardless of the size of magma chambers. Our study demonstrates that P zoning of olivine is powerful in decoding crystallization and thermal histories of mafic-ultramafic intrusions

    Distinguishing Increased Adiposity and/or Aerobic Deconditioning as Moderators of Low VO2peak in Obese Men

    Get PDF
    Peak oxygen uptake (V̇O2peak) in a cardiopulmonary exercise test (CPET) is a strong predictor of morbidity, mortality, and quality of life. V̇O2peak in obese individuals is typically below the lower limit of normal (2 transport and utilization, i.e. aerobic deconditioning; or both. We hypothesized a modified CPET, to measure the fraction of maximum isokinetic power that can be supported by aerobic metabolism, will distinguish between adiposity and deconditioning effects on V̇O2peak. PURPOSE: To compare V̇O2peak and isokinetic neuromuscular performance in obese vs non-obese men. METHODS: A modified CPET with maximal (3 s) isokinetic cycling power at baseline and the limit of ramp-incremental (RI) exercise was used to calculate: A) baseline maximum isokinetic power (Piso); B) tolerance index (TI), % of Piso at V̇O2peak; C) fatigue index (FI), % reduction in Piso per RI-watt at V̇O2peak; D) power reserve (PR), isokinetic power available at V̇O2peak expressed as % RI-wattpeak. The FRIEND nomogram was used to predict V̇O2peak. Data are mean(SD) and were assessed by t-test. RESULTS: Compared to controls (n=24), obese men (n=20) were older (32(5) vs 26(7) yr), had greater BMI (38(6) vs 23(2) kg/m2), but were not different in stature (177(5) vs 180(7) cm) or predicted V̇O2peak (3.49(0.49) vs 3.58(0.36) L/min). Obese men had lower V̇O2peak (2.84(0.42) vs 3.71(0.45) L/min, p2peak (82(15) vs 104(12) %, pIndependent of body mass, obese men had preserved leg strength (normal Piso), but the fraction of maximum isokinetic power supported by aerobic metabolism at RI intolerance was reduced (low TI) with greater fatigability (high FI); each consistent with aerobic deconditioning. A modified CPET with maximal isokinetic power measurements can distinguish the effects of increased adiposity from aerobic deconditioning on V̇O2peak in obese men

    Combined linkage and association mapping reveals candidates for Scmv1, a major locus involved in resistance to sugarcane mosaic virus (SCMV) in maize

    Get PDF
    Background Sugarcane mosaic virus (SCMV) disease causes substantial losses of grain yield and forage biomass in susceptible maize cultivars. Maize resistance to SCMV is associated with two dominant genes, Scmv1 and Scmv2, which are located on the short arm of chromosome 6 and near the centromere region of chromosome 3, respectively. We combined both linkage and association mapping to identify positional candidate genes for Scmv1. Results Scmv1 was fine-mapped in a segregating population derived from near-isogenic lines and further validated and fine-mapped using two recombinant inbred line populations. The combined results assigned the Scmv1 locus to a 59.21-kb interval, and candidate genes within this region were predicted based on the publicly available B73 sequence. None of three predicted genes that are possibly involved in the disease resistance response are similar to receptor-like resistance genes. Candidate gene–based association mapping was conducted using a panel of 94 inbred lines with variable resistance to SCMV. A presence/absence variation (PAV) in the Scmv1 region and two polymorphic sites around the Zmtrx-h gene were significantly associated with SCMV resistance. Conclusion Combined linkage and association mapping pinpoints Zmtrx-h as the most likely positional candidate gene for Scmv1. These results pave the way towards cloning of Scmv1 and facilitate marker-assisted selection for potyvirus resistance in maize

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains table of contents for Section 3, reports on ten research projects and a list of publications.National Aeronautics and Space Administration Contract 958461U.S. Navy - Office of Naval Research Grant N00014-92-J-1616U.S. Navy - Office of Naval Research Grant N00014-89-J-1019U.S. Navy - Office of Naval Research Grant N00014-90-J-1002U.S. Army Cold Regions Research and Engineering Laboratory Contract PACA89-95-K-0014Mitsubishi Corporation Agreement Dated 8/31/95U.S. Navy - Office of Naval Research Grant N00014-92-J-4098U.S. Federal Aviation Administration Grant 94-G-007DEMACO Corporation Contract DEM-95-MIT-55Joint Services Electronics Program Contract DAAH04-95-1-003

    PPM1D modulates hematopoietic cell fitness and response to DNA damage and is a therapeutic target in myeloid malignancy

    Get PDF
    PPM1D encodes a phosphatase that is recurrently activated across cancer, most notably in therapy-related myeloid neoplasms. However, the function of PPM1D in hematopoiesis and its contribution to tumor cell growth remain incompletely understood. Using conditional mouse models, we uncover a central role for Ppm1d in hematopoiesis and validate its potential as a therapeutic target. We find that Ppm1d regulates the competitive fitness and self-renewal of hematopoietic stem cells (HSCs) with and without exogenous genotoxic stresses. We also show that while Ppm1d activation confers cellular resistance to cytotoxic therapy, it does so to a lesser degree than p53 loss, informing the clonal competition phenotypes often observed in human studies. Notably, loss of Ppm1d sensitizes leukemias to cytotoxic therapies in vitro and in vivo, even in the absence of a Ppm1d mutation. Vulnerability to PPM1D inhibition is observed across many cancer types and dependent on p53 activity. Importantly, organism-wide loss of Ppm1d in adult mice is well tolerated, supporting the tolerability of pharmacologically targeting PPM1D. Our data link PPM1D gain-of-function mutations to the clonal expansion of HSCs, inform human genetic observations, and support the therapeutic targeting of PPM1D in cancer

    Cosmic voids:A novel probe to shed light on our Universe

    Get PDF
    In this paper we present the case for void science, arguing that cosmic voids are a novel probe to constrain modified gravity, dark energy, the sum of neutrino masses and galaxy evolution. Voids will answer some of the most relevant questions in cosmology and astrophysics over the next decade. <p/

    Cosmic voids::a novel probe to shed light on our Universe

    Get PDF
    Cosmic voids, the less dense patches of the Universe, are promising laboratories to extract cosmological information. Thanks to their unique low density character, voids are extremely sensitive to diffuse components such as neutrinos and dark energy, and represent ideal environments to study modifications of gravity, where the effects of such modifications are expected to be more prominent. Robust void-related observables, including for example redshift-space distortions (RSD) and weak lensing around voids, are a promising way to chase and test new physics. Cosmological analysis of the large-scale structure of the Universe predominantly relies on the high density regions. Current and upcoming surveys are designed to optimize the extraction of cosmological information from these zones, but leave voids under-exploited. A dense, large area spectroscopic survey with imaging capabilities is ideal to exploit the power of voids fully. Besides helping illuminate the nature of dark energy, modified gravity, and neutrinos, this survey will give access to a detailed map of under-dense regions, providing an unprecedented opportunity to observe and study a so far under-explored galaxy population
    corecore