444 research outputs found
Sudakov Resummations in Mueller-Navelet Dijet Production
In high energy hadron-hadron collisions, dijet production with large rapidity
separation proposed by Mueller and Navelet, is one of the most interesting
processes which can help us to directly access the well-known
Balitsky-Fadin-Kuraev-Lipatov evolution dynamics. The objective of this work is
to study the Sudakov resummation of Mueller-Navelet jets. Through the one-loop
calculation, Sudakov type logarithms are obtained for this process when the
produced dijets are almost back-to-back. These results could play an important
role in the phenomenological study of dijet correlations with large rapidity
separation at the LHC.Comment: 20 pages, 5 figures; v2, refs adde
Virtual Compton Scattering off a Spinless Target in AdS/QCD
We study the doubly virtual Compton scattering off a spinless target
within the Anti-de Sitter(AdS)/QCD formalism. We find
that the general structure allowed by the Lorentz invariance and gauge
invariance of the Compton amplitude is not easily reproduced with the standard
recipes of the AdS/QCD correspondence. In the soft-photon regime, where the
semi-classical approximation is supposed to apply best, we show that the
measurements of the electric and magnetic polarizabilities of a target like the
charged pion in real Compton scattering, can already serve as stringent tests.Comment: 21 pages, version to be published in JHEP
Comparison of Pittsburgh compound B and florbetapir in cross-sectional and longitudinal studies.
IntroductionQuantitative in vivo measurement of brain amyloid burden is important for both research and clinical purposes. However, the existence of multiple imaging tracers presents challenges to the interpretation of such measurements. This study presents a direct comparison of Pittsburgh compound B-based and florbetapir-based amyloid imaging in the same participants from two independent cohorts using a crossover design.MethodsPittsburgh compound B and florbetapir amyloid PET imaging data from three different cohorts were analyzed using previously established pipelines to obtain global amyloid burden measurements. These measurements were converted to the Centiloid scale to allow fair comparison between the two tracers. The mean and inter-individual variability of the two tracers were compared using multivariate linear models both cross-sectionally and longitudinally.ResultsGlobal amyloid burden measured using the two tracers were strongly correlated in both cohorts. However, higher variability was observed when florbetapir was used as the imaging tracer. The variability may be partially caused by white matter signal as partial volume correction reduces the variability and improves the correlations between the two tracers. Amyloid burden measured using both tracers was found to be in association with clinical and psychometric measurements. Longitudinal comparison of the two tracers was also performed in similar but separate cohorts whose baseline amyloid load was considered elevated (i.e., amyloid positive). No significant difference was detected in the average annualized rate of change measurements made with these two tracers.DiscussionAlthough the amyloid burden measurements were quite similar using these two tracers as expected, difference was observable even after conversion into the Centiloid scale. Further investigation is warranted to identify optimal strategies to harmonize amyloid imaging data acquired using different tracers
A Large Hadron Electron Collider at CERN
This document provides a brief overview of the recently published report on
the design of the Large Hadron Electron Collider (LHeC), which comprises its
physics programme, accelerator physics, technology and main detector concepts.
The LHeC exploits and develops challenging, though principally existing,
accelerator and detector technologies. This summary is complemented by brief
illustrations of some of the highlights of the physics programme, which relies
on a vastly extended kinematic range, luminosity and unprecedented precision in
deep inelastic scattering. Illustrations are provided regarding high precision
QCD, new physics (Higgs, SUSY) and electron-ion physics. The LHeC is designed
to run synchronously with the LHC in the twenties and to achieve an integrated
luminosity of O(100) fb. It will become the cleanest high resolution
microscope of mankind and will substantially extend as well as complement the
investigation of the physics of the TeV energy scale, which has been enabled by
the LHC
- âŠ