705 research outputs found

    Ice Caps and Ice Belts: The Effects of Obliquity on Ice−Albedo Feedback

    Get PDF
    Planetary obliquity determines the meridional distribution of the annual mean insolation. For obliquity exceeding 55°, the weakest insolation occurs at the equator. Stable partial snow and ice cover on such a planet would be in the form of a belt about the equator rather than polar caps. An analytical model of planetary climate is used to investigate the stability of ice caps and ice belts over the widest possible range of parameters. The model is a non-dimensional diffusive Energy Balance Model, representing insolation, heat transport, and ice-albedo feedback on a spherical planet. A complete analytical solution for any obliquity is given and validated against numerical solutions of a seasonal model in the "deep-water" regime of weak seasonal ice line migration. Multiple equilibria and unstable transitions between climate states (ice-free, Snowball, or ice cap/belt) are found over wide swaths of parameter space, including a "Large Ice-Belt Instability" and "Small Ice-Belt Instability" at high obliquity. The Snowball catastrophe is avoided at weak radiative forcing in two different scenarios: weak albedo feedback and inefficient heat transport (favoring stable partial ice cover), or efficient transport at high obliquity (favoring ice-free conditions). From speculative assumptions about distributions of planetary parameters, three-fourths to four-fifths of all planets with stable partial ice cover should be in the form of Earth-like polar caps

    Amantadine and levodopa in the treatment of Parkinson's disease

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/117040/1/cpt197213128.pd

    A longitudinal study of chiropractic use among older adults in the United States

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Longitudinal patterns of chiropractic use in the United States, particularly among Medicare beneficiaries, are not well documented. Using a nationally representative sample of older Medicare beneficiaries we describe the use of chiropractic over fifteen years, and classify chiropractic users by annual visit volume. We assess the characteristics that are associated with chiropractic use versus nonuse, as well as between different levels of use.</p> <p>Methods</p> <p>We analyzed data from two linked sources: the baseline (1993-1994) interview responses of 5,510 self-respondents in the Survey on Assets and Health Dynamics Among the Oldest Old (AHEAD), and their Medicare claims from 1993 to 2007. Binomial logistic regression was used to identify factors associated with chiropractic use versus nonuse, and conditional upon use, to identify factors associated with high volume relative to lower volume use.</p> <p>Results</p> <p>There were 806 users of chiropractic in the AHEAD sample yielding a full period prevalence for 1993-2007 of 14.6%. Average annual prevalence between 1993 and 2007 was 4.8% with a range from 4.1% to 5.4%. Approximately 42% of the users consumed chiropractic services only in a single calendar year while 38% used chiropractic in three or more calendar years. Chiropractic users were more likely to be women, white, overweight, have pain, have multiple comorbid conditions, better self-rated health, access to transportation, higher physician utilization levels, live in the Midwest, and live in an area with fewer physicians per capita. Among chiropractic users, 16% had at least one year in which they exceeded Medicare's "soft cap" of 12 visits per calendar year. These over-the-cap users were more likely to have arthritis and mobility limitations, but were less likely to have a high school education. Additionally, these over-the-cap individuals accounted for 58% of total chiropractic claim volume. High volume users saw chiropractors the most among all types of providers, even more than family practice and internal medicine combined.</p> <p>Conclusion</p> <p>There is substantial heterogeneity in the patterns of use of chiropractic services among older adults. In spite of the variability of use patterns, however, there are not many characteristics that distinguish high volume users from lower volume users. While high volume users accounted for a significant portion of claims, the enforcement of a hard cap on annual visits by Medicare would not significantly decrease overall claim volume. Further research to understand the factors causing high volume chiropractic utilization among older Americans is warranted to discern between patterns of "need" and patterns of "health maintenance".</p

    Wireless aquatic navigator for detection and analysis (WANDA)

    Get PDF
    The cost of monitoring and detecting pollutants in natural waters is of major concern. Current and forthcoming bodies of legislation will continue to drive demand for spatial and selective monitoring of our environment, as the focus increasingly moves towards effective enforcement of legislation through detection of events, and unambiguous identification of perpetrators. However, these monitoring demands are not being met due to the infrastructure and maintenance costs of conventional sensing models. Advanced autonomous platforms capable of performing complex analytical measurements at remote locations still require individual power, wireless communication, processor and electronic transducer units, along with regular maintenance visits. Hence the cost base for these systems is prohibitively high, and the spatial density and frequency of measurements are insufficient to meet requirements. In this paper we present a more cost effective approach for water quality monitoring using a low cost mobile sensing/communications platform together with very low cost stand-alone ‘satellite’ indicator stations that have an integrated colorimetric sensing material. The mobile platform is equipped with a wireless video camera that is used to interrogate each station to harvest information about the water quality. In simulation experiments, the first cycle of measurements is carried out to identify a ‘normal’ condition followed by a second cycle during which the platform successfully detected and communicated the presence of a chemical contaminant that had been localised at one of the satellite stations

    Characterization of onset of parametric decay instability of lower hybrid waves

    Get PDF
    The goal of the lower hybrid current drive (LHCD) program on Alcator C-Mod is to develop and optimize ITER-relevant steady-state plasmas by controlling the current density profile. Using a 4×16 waveguide array, over 1 MW of LH power at 4.6 GHz has been successfully coupled to the plasmas. However, current drive efficiency precipitously drops as the line averaged density (n̄ e ) increases above 10[superscript 20]m[superscript −3]. Previous numerical work shows that the observed loss of current drive efficiency in high density plasmas stems from the interactions of LH waves with edge/scrape-off layer (SOL) plasmas [Wallace et al., Physics of Plasmas 19, 062505 (2012)]. Recent observations of parametric decay instability (PDI) suggest that non-linear effects should be also taken into account to fully characterize the parasitic loss mechanisms [Baek et al., Plasma Phys. Control Fusion 55, 052001 (2013)]. In particular, magnetic configuration dependent ion cyclotron PDIs are observed using the probes near n̄[subscript e]≈1.2×10[superscript 20]m[superscript −3] . In upper single null plasmas, ion cyclotron PDI is excited near the low field side separatrix with no apparent indications of pump depletion. The observed ion cyclotron PDI becomes weaker in inner wall limited plasmas, which exhibit enhanced current drive effects. In lower single null plasmas, the dominant ion cyclotron PDI is excited near the high field side (HFS) separatrix. In this case, the onset of PDI is correlated with the decrease in pump power, indicating that pump wave power propagates to the HFS and is absorbed locally near the HFS separatrix. Comparing the observed spectra with the homogeneous growth rate calculation indicates that the observed ion cyclotron instability is excited near the plasma periphery. The incident pump power density is high enough to overcome the collisional homogeneous threshold. For C-Mod plasma parameters, the growth rate of ion sound quasi-modes is found to be typically smaller by an order of magnitude than that of ion cyclotron quasi-modes. When considering the convective threshold near the plasma edge, convective growth due to parallel coupling rather than perpendicular coupling is likely to be responsible for the observed strength of the sidebands. To demonstrate the improved LHCD efficiency in high density plasmas, an additional launcher has been designed. In conjunction with the existing launcher, this new launcher will allow access to an ITER-like high single pass absorption regime, replicating the JLH (r) expected in ITER. The predictions from the time domain discharge scenarios, in which the two launchers are used, will be also presented.United States. Dept. of Energy (Award No. DE-FC02-99ER54512)United States. Dept. of Energy (Award No. DE-AC02-76CH03073

    WANDA: A Radically New Approach for Low-Cost Environmental Monitoring

    Get PDF
    The cost of monitoring pollutants within natural waters is of major concern. Existing and forthcoming bodies of legislation continually drive the demand for spatial and selective monitoring of key pollutants within our environment. Although research and commercial entities continue to drive down the cost of the infrastructure involved in environmental sensing systems (with an aim to increase scalability), the realisation of deploying a number of such systems even now remains out of reach. High cost and maintenance continue to persist as the major limiting factors. The aim of this work is to combine recent advances in robotics with chemical sensing techniques to remove all but the chemo-responsive material from each sensing node, and package the sensing element within a low cost, mobile, biomimetic robotic fish for effective water quality monitoring. Consequently, this approach is believed to radically reduce the systemic cost and maintenance per node and in doing so it will increase the scalability for spatial and selective monitoring of key pollutants within our environment
    corecore