69 research outputs found

    Comparison of multiple and novel measures of dietary glycemic carbohydrate with insulin resistant status in older women

    Get PDF
    BACKGROUND:Previous epidemiological investigations of associations between dietary glycemic intake and insulin resistance have used average daily measures of glycemic index (GI) and glycemic load (GL). We explored multiple and novel measures of dietary glycemic intake to determine which was most predictive of an association with insulin resistance.METHODS:Usual dietary intakes were assessed by diet history interview in women aged 42-81 years participating in the Longitudinal Assessment of Ageing in Women. Daily measures of dietary glycemic intake (n = 329) were carbohydrate, GI, GL, and GL per megacalorie (GL/Mcal), while meal based measures (n = 200) were breakfast, lunch and dinner GL; and a new measure, GL peak score, to represent meal peaks. Insulin resistant status was defined as a homeostasis model assessment (HOMA) value of >3.99; HOMA as a continuous variable was also investigated.RESULTS:GL, GL/Mcal, carbohydrate (all P < 0.01), GL peak score (P = 0.04) and lunch GL (P = 0.04) were positively and independently associated with insulin resistant status. Daily measures were more predictive than meal-based measures, with minimal difference between GL/Mcal, GL and carbohydrate. No significant associations were observed with HOMA as a continuous variable.CONCLUSION:A dietary pattern with high peaks of GL above the individual's average intake was a significant independent predictor of insulin resistance in this population, however the contribution was less than daily GL and carbohydrate variables. Accounting for energy intake slightly increased the predictive ability of GL, which is potentially important when examining disease risk in more diverse populations with wider variations in energy requirements

    Comparison of multiple and novel measures of dietary glycemic carbohydrate with insulin resistant status in older women

    Get PDF
    Background: Previous epidemiological investigations of associations between dietary glycemic intake and insulin resistance have used average daily measures of glycemic index (GI) and glycemic load (GL). We explored multiple and novel measures of dietary glycemic intake to determine which was most predictive of an association with insulin resistance. Methods: Usual dietary intakes were assessed by diet history interview in women aged 42-81 years participating in the Longitudinal Assessment of Ageing in Women. Daily measures of dietary glycemic intake (n = 329) were carbohydrate, GI, GL, and GL per megacalorie (GL/Mcal), while meal based measures (n = 200) were breakfast, lunch and dinner GL; and a new measure, GL peak score, to represent meal peaks. Insulin resistant status was defined as a homeostasis model assessment (HOMA) value of \u3e3.99; HOMA as a continuous variable was also investigated. Results: GL, GL/Mcal, carbohydrate (all P \u3c 0.01), GL peak score (P = 0.04) and lunch GL (P = 0.04) were positively and independently associated with insulin resistant status. Daily measures were more predictive than meal-based measures, with minimal difference between GL/Mcal, GL and carbohydrate. No significant associations were observed with HOMA as a continuous variable. Conclusion: A dietary pattern with high peaks of GL above the individual’s average intake was a significant independent predictor of insulin resistance in this population, however the contribution was less than daily GL and carbohydrate variables. Accounting for energy intake slightly increased the predictive ability of GL, which is potentially important when examining disease risk in more diverse populations with wider variations in energy requirements

    EIRFLAT-1: A FlatSat platform for the development and testing of the 2U CubeSat EIRSAT-1

    Get PDF
    The Educational Irish Research Satellite (EIRSAT-1) is a 2U CubeSat being designed, built and tested at University College Dublin. A FlatSat platform known as EIRFLAT-1 has been constructed to enable the testing and development of the CubeSat. EIRFLAT-1 facilitates the electrical connections between CubeSat components while leaving key interfaces accessible for test equipment and allowing for the hot swapping of components. Commercial Off The Shelf and in-house developed hardware has been tested using EIRFLAT-1 at component, subsystem and full system level. In addition, the FlatSat has been used for flight software development. This paper describes the design of EIRFLAT-1 including electrical and mechanical components and additional ground support equipment developed to assist in the testing and development activities. EIRFLAT-1 has proven to be an invaluable tool for testing and has led to the discovery of issues and unexpected behaviour with flight hardware which would have contributed to schedule delays if undiscovered until after the satellite was assembled. Moreover, EIRFLAT-1 facilitated early and incremental testing of both software and operations procedures. The schematics for the electrical design of EIRFLAT-1, which is compatible with all CubeSat Kit PC/104 components, has been made publicly available for use by other educational CubeSat team

    Experiences in firmware development for a CubeSat instrument payload

    Get PDF
    Recent advancements in gamma-ray detector technology have brought new opportunities to study gamma-ray bursts and other high-energy phenomena. However, there is a lack of dissemination on the development methods, tools and techniques used in the production of instrument flight firmware. This is understandable as firmware for spacecraft payloads may be proprietary or exceptionally hardware specific and so is not always published. However, this leaves a gap in the knowledge for CubeSat teams, especially those consisting of university students who may be building a custom spacecraft payload with limited initial experience. The Gamma-Ray Module (GMOD) on-board EIRSAT-1, a 2U CubeSat in the 2nd European Space Agency Fly Your Satellite! programme, is one such instrument. GMOD features a 25x25x40mm Scionix CeBr3 scintillator, coupled to an array of 16 (4x4) JSeries OnSemiconductor MicroFJ-60035-TSV silicon photomultipliers (SiPMs) with readout provided by the SIPHRA IDE3380 application specific integrated circuit. The instrument is supported by the Gamma-Ray Module motherboard which controls and configures the instrument, providing regulated voltage and current sources as well as generating time tagged event packets and a temporary on-board flash storage. At the core of this system is the Texas Instruments MSP430FR5994 microcontroller. A custom firmware was produced for the instrument by the EIRSAT-1 team over numerous cycles of testing and development to reliably perform the long duration tasks of readout, storage and transfer of time tagged event data to the EIRSAT-1 on-board computer. Recognising the value of sharing our experiences and pitfalls on firmware development with the wider CubeSat community, this paper will provide an introduction to GMOD, with focus primarily on the development approach of the firmware. The development, testing, version control, essential tools and an overview of how the resources provided by the device manufacturer were used will be examined, such that the lessons learned may be extended to other payloads from student-led mission

    Thermal characterization testing of a robust and reliable thermal knife HDRM (Hold Down and Release Mechanism) for CubeSat deployables

    Get PDF
    Thermal knife HDRMs (Hold Down and Release Mechanisms) are commonly used in CubeSats and other small satellites. However, detailed information on proven designs is difficult to find. Design of a robust and reliable mechanism can present technical challenges which may only become apparent during testing, and often only when tested in a space representative environment. A custom thermal knife HDRM was designed and built for the antenna deployment module of EIRSAT-1 to deploy four coil spring antenna elements, but the same or a similar design could be repurposed quite easily to release a wide range of CubeSat deployables. In this design resistors are used to cut dyneema lines. For robustness and reliability, the thermal response of the mechanism must be well understood. To reach the melting point of the dyneema (150C) the power dissipated in the resistors must often exceed the maximum rated value. Therefore, choosing the operating current and the burn time is a careful trade-off between ensuring that the resistor reliably cuts the dyneema line and ensuring that the resistor, solder joints, PCB and nearby components are not damaged by the high temperatures. These choices are further complicated by the requirement that the mechanism operates over a range of temperatures. A thermal vacuum test campaign was carried out to better understand and characterise the thermal behaviour of the EIRSAT-1 mechanism. For the test a model of the mechanism was built with several temperature sensors installed. Two of these sensors were installed directly on the body of the resistors using a thermally conductive epoxy. Burn tests were performed in vacuum at temperatures between -37C and +56C. The test shows many interesting results including the effect of the dyneema lines on the thermal response, the possibility of desoldering the burn resistors and a comparison between the performance at ambient and vacuum conditions. Finally, a summary is given of the key technical challenges associated with this type of mechanism along with some recommendations to help make future designs more robust and reliable

    Update on the status of the Educational Irish Research Satellite (EIRSAT-1)

    Get PDF
    The Educational Irish Research Satellite, EIRSAT-1, is a 2U CubeSat being implemented by a student-led team at University College Dublin, as part of the 2nd round of the European Space Agency’s Fly Your Satellite! programme. In development since 2017, the mission has several scientific, technological and outreach goals. It will fly an in-house developed antenna deployment module, along with three custom payloads, which are integrated with commercial off-the-shelf subsystems. In preparation for the flight model, a full-system engineering qualification model of the spacecraft has undergone an extensive period of test campaigns, including full functional tests, a mission test, and environmental testing at the European Space Agency’s CubeSat Support Facility in Redu, Belgium. Beyond the technical, educational, and capacity-building goals of the mission, EIRSAT-1 aims to inspire wider study of STEM subjects, while highlighting the importance of multidisciplinary teams and creating greater awareness of space in everyday life. A wide range of outreach activities are being undertaken to realise these aims. This paper provides a status update on key aspects of the EIRSAT-1 project and the next steps towards launc

    Microbiome-derived carnitine mimics as previously unknown mediators of gut-brain axis communication

    Get PDF
    Alterations to the gut microbiome are associated with various neurological diseases, yet evidence of causality and identity of microbiome-derived compounds that mediate gut-brain axis interaction remain elusive. Here, we identify two previously unknown bacterial metabolites 3-methyl-4-(trimethylammonio)butanoate and 4-(trimethylammonio)pentanoate, structural analogs of carnitine that are present in both gut and brain of specific pathogen–free mice but absent in germ-free mice. We demonstrate that these compounds are produced by anaerobic commensal bacteria from the family Lachnospiraceae (Clostridiales) family, colocalize with carnitine in brain white matter, and inhibit carnitine-mediated fatty acid oxidation in a murine cell culture model of central nervous system white matter. This is the first description of direct molecular inter-kingdom exchange between gut prokaryotes and mammalian brain cells, leading to inhibition of brain cell function
    corecore