
4th Symposium on Space Educational Activities
Barcelona, April 2022

 Page 1 of 6

Experiences in Firmware Development for a CubeSat Instrument Payload

Joseph Mangan1, David Murphy2, Rachel Dunwoody2, Maeve Doyle2, Alexey Ulyanov2, Mike

Hibbett3, Sai Krishna Reddy Akarapu2, Jessica Erkal2, Gabriel Finneran2, Fergal Marshall2,

Jack Reilly2, Lána Salmon2, Eoghan Somers4, Joseph Thompson4, Sarah Walsh2, Lorraine

Hanlon2, David McKeown4, William O'Connor4, Brian Shortt5, Ronan Wall2 and Sheila

McBreen2

__

Abstract

Recent advancements in gamma-ray detector technology have brought new opportunities to

study gamma-ray bursts and other high-energy phenomena. However, there is a lack of

dissemination on the development methods, tools and techniques used in the production of

instrument flight firmware. This is understandable as firmware for spacecraft payloads may

be proprietary or exceptionally hardware specific and so is not always published. However,

this leaves a gap in the knowledge for CubeSat teams, especially those consisting of

university students who may be building a custom spacecraft payload with limited initial

experience. The Gamma-Ray Module (GMOD) on-board EIRSAT-1, a 2U CubeSat in the

2nd European Space Agency Fly Your Satellite! programme, is one such instrument. GMOD

features a 25x25x40mm Scionix CeBr3 scintillator, coupled to an array of 16 (4x4) JSeries

OnSemiconductor MicroFJ-60035-TSV silicon photomultipliers (SiPMs) with readout

provided by the SIPHRA IDE3380 application specific integrated circuit. The instrument is

supported by the Gamma-Ray Module motherboard which controls and configures the

instrument, providing regulated voltage and current sources as well as generating time

tagged event packets and a temporary on-board flash storage. At the core of this system is

the Texas Instruments MSP430FR5994 microcontroller. A custom firmware was produced for

the instrument by the EIRSAT-1 team over numerous cycles of testing and development to

reliably perform the long duration tasks of readout, storage and transfer of time tagged event

data to the EIRSAT-1 on-board computer. Recognising the value of sharing our experiences

and pitfalls on firmware development with the wider CubeSat community, this paper will

provide an introduction to GMOD, with focus primarily on the development approach of the

firmware. The development, testing, version control, essential tools and an overview of how

the resources provided by the device manufacturer were used will be examined, such that

the lessons learned may be extended to other payloads from student-led missions.

Keywords

EIRSAT-1, GMOD, FYS!, Gamma-Ray Detector, Firmware, Software, MSP430

1 Corresponding author: University College Dublin, Ireland, joseph.mangan@ucdconnect.ie
2 School of Physics, University College Dublin, Ireland
3 Irish Manufacturing Research, Ireland
4 School of Mechanical and Materials Engineering, University College Dublin, Ireland
5 ESA European Space Research and Technology Centre ESTEC, Netherlands

4th Symposium on Space Educational Activities
Barcelona, April 2022

 Page 2 of 6

1. Introduction

The simultaneous detection of the gravitational
wave (GW) GW170817 [1], and its coincident
electromagnetic counterpart GRB170817A [2]
has resulted in a new era of gravitational and
gamma-ray burst (GRB) astronomy. However,
this comes at a time when the main GRB
detecting flagship missions are operating close
to and beyond their intended operational
lifetime [3]. One method for enhanced
capabilities is the use of CubeSats, which can
be developed for relatively low cost, on short
timescales, with reduced risk and technology
acceptance levels. This provides opportunities
for industry and university teams to develop
and test hardware, to progress the maturation
of novel technology and contribute to the
scientific community.

The Gamma-Ray Module (GMOD) is a <1U,
gamma-ray detecting instrument which has
been developed based on a heritage of tests
(e.g. [4] and references therein). GMOD is the
primary science payload on the 2U CubeSat
EIRSAT-1 (Educational Irish Research
Satellite) [5], a participant of the 2nd European
Space Agency (ESA) Fly Your Satellite! (FYS!)
programme, consisting of three scientific
payloads, custom software and off-the-shelf
hardware.

From our experience, there is a lack of
dissemination of firmware development
methods for payloads, on large missions and
CubeSats. This is understandable as there
may be legal issues surrounding publication of
software for proprietary hardware, or simply
that the firmware solutions are seen as too
specific to the mission. However, this leads to
a gap in the literature and a paucity of
references on common techniques when it
comes to firmware development and testing.
To encourage further sharing of knowledge in
this area we present an overview of GMOD
(§2), our firmware development approach (§3),
the tools used (§4), as well as an overview of
some pitfalls and lessons learned (§5)
throughout its development.

2. The Gamma-Ray Module

GMOD [6] consists of a 25x25x40mm Scionix
CeBr3 scintillator coupled to a 4x4 tiled array
of 16 OnSemiconductor MicroFJ-60035 silicon
photomultipliers (SiPMs) readout using the
SIPHRA application specific integrated circuit
(ASIC). GMOD is a novel instrument primarily
developed to study GRB events in the GW era
while also demonstrating the use of SiPMs in
earth orbit and their role in future missions.

Figure 1. GMOD, the Gamma-Ray Module, the
primary experiment payload on EIRSAT-1

mounted on an aluminium test fixture (lower)

The GMOD motherboard is a readout and
control system responsible for carrying out the
operation-critical duties of the instrument. This
is accomplished using a custom firmware [7]
developed in C/C++ for the Texas Instruments
(TI) MSP430FR5994 16MHz microcontroller.
The firmware requirements include:

- Readout of the detector assembly.
- Generation of time tagged event (TTE)

data from the detector readout.
- Processing and temporary on-board

storage of TTEs in 128MBit flash.
- Constant current supply (ASIC) and

bias voltage generation (SiPMs).
- Transmission of TTE data to the

EIRSAT-1 on-board computer (OBC).
- Configuration of the instrument.

3. Firmware Development Approach

This development cycle, as demonstrated in
Figure 2, begins with an assessment of the
requirements followed by implementation and
testing on a subsystem level. If satisfactory,
testing is then done with the OBC in the loop. If
either test fails, the firmware is revised and
retested. This approach was selected as it
provides a structured approach to development
and testing from the perspective of the OBC,
payload and the interface between them.

3.1. Firmware Requirements

It is necessary to order the production of
firmware in a structured fashion. Typically
instrument firmware would be framed around
the requirements set out in the preliminary
design review (PDR) and critical design review
(CDR) products. These are developed as part
of phases B/C of the typical project lifecycle
and encompass the design specification of the

4th Symposium on Space Educational Activities
Barcelona, April 2022

 Page 3 of 6

spacecraft and its payloads. For ESA FYS! the
project structure closely adheres to the ECSS
standards set out in ECSS-M-ST-10C as the
“Design Your Satellite” phase, which include
producing the design definition file (DDF) and
design justification file (DJF) documents.
These documents form the bedrock of
firmware development for the payload and are
the fundamental starting point and reference
when developing any new functionality.

3.2. Outputs From Testing

Throughout the design and qualification stage
of the life cycle, the spacecraft and payloads
undergo numerous tests. Environmental
testing may be conducted on the subsystem

[4] and system level [8], which may also
require pre-campaign functional and mission

tests [9]. All of these tests can be used to

inform additions or amendments to the existing
functionality, providing feedback not found
within the scope of the basic payload firmware
requirements. Furthermore, these tests should
be used as key milestones along the path of
development. Certain functionality will be
required at these milestones (ie. pre/post
vibration functional tests), thus the build up to
these tests can be used to assign priority and
pacing to certain blocks of functionality. It is
important to ensure that priority is maintained
and the appropriate time is allocated where
needed. As in Figure 2, requirements,
documentation and testing all feed into
development of new functionality, with some
being introduced as outputs from test
campaigns throughout the project life cycle.

3.3. Introducing Functionality

Payload requirements are initially distilled into
individual deliverables during a review of the
documentation or through team meetings post
testing. In some cases, these deliverables may
be so low level that they do not appear in the
design documents. Interface documents
(between the OBC and payload) can then be
produced which outline the operations and
form of communications. For instance, an
interface document may describe the
command structure to activate certain
functionality on the payload. In more intricate
situations, an interface document may explicitly
outline how this functionality is expected to
behave if that operation impacts the interface.

For example, on GMOD, a “Function List”
exists with all commands, descriptions of their
operation, the size of data expected to be
received and transmitted and any fail scenarios
listed.

Figure 2. Process flow diagram describing the
addition and development of new functionality

Similarly, in the case of complex operations
like the serving of full channel TTE data from
GMOD to the OBC, a more detailed overview
of how the functionality should be implemented

was produced. We have found in our

experience that it is sufficient to produce these
documents as required, without firm document
control, but that the final iteration would be
appropriately documented for OBC interfacing.

3.4. Implementing Functionality

This functionality is then implemented in C/C++
using the Code Composer Studio (CCS)1
integrated development environment (IDE)
provided by TI. An important part of this
development is version control. This is
performed using the Git version control tool.
Upon completion of the new functionality,
committing and pushing to the Git remote, the
firmware is then tested.

3.5. Firmware Debugging

Before testing new functionality with the OBC,
it is tested and debugged separately on a test
setup (as shown in Figure 3) replicating the
OBC interface to confirm all functional
requirements are met. This is done using
ground support equipment (GSE), some
having been developed and used during the
EIRSAT-1 environmental test campaigns
(ETCs). Additionally, it is possible to drill

1 https://www.ti.com/tool/CCSTUDIO

https://www.ti.com/tool/CCSTUDIO

4th Symposium on Space Educational Activities
Barcelona, April 2022

 Page 4 of 6

further into the firmware operation mid-
execution using the CCS IDE debugging
capabilities, which offer numerous breakpoint,
timing and variable reporting tools. If a bug is
found or the functionality does not behave as
expected the firmware is revised (from §3.3)
with edits to the firmware code, as seen in
Figure 2.

When testing is complete, a binary file is
generated after compilation, which is renamed
with the version ID and timestamp of creation.
The version ID code records major, minor and
patch updates in a two byte ID as in Table 1:

 Table 1. The version ID convention adopted for
the GMOD firmware development

Versions Major

4 bits
(0-15)

Minor
8 bits (0-

255)

Patch
4 bits (0-

15)

DM 0 - -

EQM 0x1 0x00 - 0xFF 0x0 - 0xF

FM 0x2 0x00 - 0xFF 0x0 - 0xF

The version ID is also hardcoded into the
firmware and is accessible over I2C. A major
increment indicates the firmware model. A
minor increment may be any change judged to
be larger than a patch. A patch update could
be something as small as a bug fix or comment
correction (a rollover of the patch increment
from 0xF to 0x0 implies a minor increment has
occurred). For example, V1.2.3 is encoded as
two bytes as 0x1023. When completed the
firmware is tagged on Git using its version ID
for later reference.

3.6. GMOD/OBC Interface Testing

Once there is confidence in the newly
developed firmware the interface between the
OBC and GMOD is tested. The binary file is
reformatted into serial bootloader commands
used by the OBC to program GMOD. The OBC
can then command and control GMOD using
the Mission Control Software (MCS), provided
by Bright Ascension. Throughout these tests
the general operation of the new functionality
can be confirmed for both OBC and GMOD
while any deviations or changes to the
interface can be discussed in a post test
context. Any deviations from the original
interface can be agreed and amended by
revision of functionality (from §3.3). Once
satisfied, the new functionality is considered
complete and the cycle begins anew, as in
Figure 2. For instance, development of

GMOD’s demonstration model firmware was
produced in a closed loop without input from
the OBC software team. This was acceptable
for this iteration, as it was intended to simply
demonstrate the instrument operation as a
standalone system. However future iterations
have strict interfacing between the OBC and
GMOD and require close collaboration with the
OBC software team. The EQM version was
redeveloped from the ground up using this
flow.

4. Development Tools and Resources

It's not possible to describe a universal
configuration for testing firmware applicable to
all. However, many of the tools used with
GMOD are generic, off the shelf and for the
most part relatively accessible. Similarly, while
other payloads use different hardware and may
be locked into a given device manufacturer's
documentation, compilers and drivers, many
reputable manufacturers share the same level
of high quality in these areas. For this reason,
we describe the development and test tools
used, such that other teams might find similar
services provided by their chosen device
manufacturer.

4.1. MSP-EXP430FR5994 Launchpad

Development kits are intended to provide a
starting point for unfamiliar audiences. These
kits allow the users to develop skills when
working with embedded devices as well as in
understanding the fundamentals of the device
and its peripherals. For instance, TI produces
the MSP-EXP430FR5994 LaunchPad, with
similar kits for their range of products. These
are invaluable tools to begin firmware
development by exploring the limits and
potential quirks of the chosen device while also
allowing the user to evaluate its suitability,
potential design ideas and capabilities before
incorporating them into their application. By far
its most useful application is its ability to act as
a programmer for any MSP430 device with
accessible SBW pins. The LaunchPad PCB
consists of two blocks: the MSP430 target and
the eZ-FET debug probe. The eZ-FET, which
is connected to the target device via jumper
pins, can be broken out from the LaunchPad
and connected to any MSP430FR5994 device.
This provides access to TI’s debugging tools in
CCS, TI’s EnergyTrace capabilities (for live
power management analysis) and a low-cost
programmer, which as compared to a generic
flashing device would normally be priced up to
€200 per unit. The LaunchPad can be seen in
Figure 3.

4th Symposium on Space Educational Activities
Barcelona, April 2022

 Page 5 of 6

Figure 3. The hardware setup used to test GMOD firmware, including the motherboard, interface board,
Total Phase Aardvark, MSP-EXP430FR5994 LaunchPad and FTDI LC234X UART module

4.2. TI’s Code Composer Studio

Code Composer Studio is an Eclipse based
IDE which supports TI’s MSP430 devices. As
such, CCS allows the creation of project
profiles which can be integrated with Git, a
source code editor, compilation and even
register and memory browsing on active
debugging code along with all the other
general debugging operations. Furthermore,
given that CCS is built upon the Eclipse open
framework, there is no licence fee to access or
develop using CCS, a quality which is
especially advantageous for university teams.

4.3. TI’s MSP430 Driverlib

Depending on the application, a choice can be
made on how the firmware developer interacts
with the device peripherals in C/C++. For the
MSP430 there is the option for direct register
level interaction (the developer directly
sets/resets bits in the device/peripheral control
registers) or indirect interaction where the
developer may use a set of abstracted libraries
developed by TI called Driverlib. This is very
useful for several reasons as it allows almost
immediate access to the device peripherals
without in-depth knowledge of the MSP430,
but also may be used as a reference when
looking for an example implementation.

4.4. TI Documentation and Examples

Developing for hardware of course requires
reference to device documentation. This is a
must for successful development of any
application. TI have compiled a comprehensive
user manual and data sheet for the
MSP430FR5994 while also providing
application reports describing best practice and
the use of the device peripherals. TI provides a
number of example scripts in the TI Resource

Explorer, describing in detail how to operate
the device and the internal peripherals for both

register level and Driverlib applications.

4.5. Ground Support Equipment

Testing of firmware requires simulation of the
intended interface between the payload and
the spacecraft. A GMOD interface board was
built to break out the PC/104 header for the
ETC. GMODs primary channels of
communication are through I2C (command and
control) and 128k baud asynchronous serial
(science data). To allow control of GMOD in
the absence of the OBC, a Total Phase
Aardvark I2C/SPI Adapter is used to interface
with GMOD using Python scripts. Readout of
science data over serial can be achieved using
any generic USB to serial interface, in the case
of GMOD an FTDI LC234X UART module was
selected. To emulate the role of the OBC and
MCS during testing, a Python Jupyter
Notebook was developed which provides
access to the GMOD command set. Both the
Total Phase Aardvark and FTDI LC234X
modules can be seen in Figure 3.

5. Discussion and Lessons Learned

5.1. Structure is Essential

As mentioned in §3.1, firmware development
needs structure, primarily based around the
requirements of the payload, but also in terms
of the scheduling of deliverables and priority
assigned to functional blocks as described in
§3.2. This structure is informed by the existing
documentation from mission planning, testing
and design.

5.2. Know When Enough is Enough

In §3.2, a reference is made to time allocation
regarding firmware development. There are

4th Symposium on Space Educational Activities
Barcelona, April 2022

 Page 6 of 6

diminishing returns when fixating on the
implementation of functionality, particularly
when it comes to the impact on schedules.
Typically if firmware works as expected,
satisfies the requirement criteria and has been
tested - little can be gained by further
modification.

5.3. Balancing Schedules

As a student team consisting mostly of PhD
and masters students, working on a
demanding project such as CubeSat
development means maintaining a balance
between academic work and work related to
EIRSAT-1. This is not at all straightforward and
the amount of time required to be dedicated to

the project should not be underestimated.

5.4. Testing Firmware

There is no “one size fits all” when it comes to
firmware/hardware testing. However, from our
experience, we have found it is important
during testing to introduce a level of
“randomness” as expected during actual
operation, to better stress the firmware. For
one example, externally triggering GMOD with
periodic pulses does not test the robustness of
the firmware in the same way as triggering
randomly in time, which better simulates
realistic detections and strains detector
readout, access to flash and transmission of
data to the OBC.

Another aspect is unit testing firmware.
Typically firmware developed for embedded
systems is not usually unit tested. This is often
due to the belief that it is impossible or
impractical due to hardware specifics, or
simply because it is acceptable on embedded
systems for there to be no defined boundary
between pure software and hardware/register
manipulation. However, unit testing during
development on embedded systems is
possible. Test driven development (TDD) has a
number of benefits, including reduced time
spent debugging, confidence in the final
product, continued confidence after
modification of the firmware and well-
structured code, which stands as objectively
reliable. While unit test development is
underway with the GMOD firmware, it would
have been advisable, and saved time, to have
begun test driven development from the start.

6. Conclusion

This paper presents the payload firmware
development approach of a student-led
CubeSat team. The importance of a structured
development cycle, availing of manufacturer
resources, balancing PhD and project related

work as well as adequate stress testing of the
firmware have all been highlighted. In
conclusion, there is no single way to develop
payload firmware, however it is hoped this may
offer some advice and a starting point to other
teams to begin their own payload firmware
development.

7. Acknowledgements

EIRSAT-1 is carried out with the support of
ESA’s Education Office under the Fly Your
Satellite! 2 programme. This study was
supported by The ESA’s Science Programme
under contract 4000104771/11/NL/CBi. JM and
SMB acknowledge support from Science
Foundation Ireland (SFI) under grant number
17/CDA/4723. We acknowledge all students
who have contributed to EIRSAT-1.

References

[1] Abbott, et al., “Gravitational Waves and
Gamma-Rays from a Binary Neutron
Star Merger: GW170817 and GRB
170817A”, ApJL, 848 L13, 2017

[2] Goldstein, et al., “An Ordinary Short
Gamma-Ray Burst with Extraordinary
Implications: Fermi-GBM Detection of
GRB 170817A”, ApJL, 848 L14, 2017

[3] Perkins et al., “Burstcube A Cubesat for
Gravitational Wave Counterparts”, PoS
ICRC2017, 760 (2017).

[4] Mangan et al., “The Environmental Test
Campaign of GMOD, a Novel Gamma-
Ray Detector,” Proc. SPIE 11852 ICSO,
2021

[5] Doyle et al., “Update on the Status of the
Educational Irish Research Satellite
(EIRSAT-1)”, Proc. 4th SSEA, 2022

[6] Murphy et al., “A compact instrument for
gamma-ray burst detection on a
CubeSat platform I”, EA, 52 59–84, 2021

[7] Mangan et al., "Embedded Firmware
Development for a Novel CubeSat
Gamma-Ray Detector," IEEE (SMC-IT),
14-22, 2021

[8] Dunwoody et al., “Thermal Vacuum Test
Campaign of the EIRSAT-1 Engineering
Qualification Model”, Aerospace 2022, 9,
99. 2022

[9] Doyle et al., “Mission Test Campaign for
the EIRSAT-1 Engineering Qualification
Model”, Aerospace 9(2), 100, 2022

