147 research outputs found

    The Jews of the Desert: Colonialism, Zionism, and the Jews of the Algerian M'zab, 1882-1962.

    Full text link
    This dissertation studies the Jewish community of the Algerian M’zab during the French colonization of the Sahara from 1882 until 1962. French officials refused to extend the 1870 CrĂ©mieux Decree that emancipated Algerian Jews to the M’zab after its 1882 annexation. French administrators saw the M’zabi Jews as insurmountably different and consequently excluded them from emancipation. Despite petitions from the community and French and Algerian Jewish advocacy for extending emancipation to the south, successive French colonial and metropolitan governments declined to extend the CrĂ©mieux Decree to the M’zab. French officials justified this decision by invoking the insurmountable difference of M’zabi Jews, who were both too Jewish and too similar to Algerian Muslims to be “regenerated” as French citizens. Within the colonial legal system, M’zabi Jews were classified as “indigĂšnes,” or natives, alongside Algerian Muslims. M’zabi Jews faced the restrictions that bounded the lives of Muslims in French Algeria and settler antisemitism that culminated in the Vichy abrogation of the CrĂ©mieux Decree in 1940. When Free French forces reinstated the CrĂ©mieux Decree in 1943, the French again excluded the M’zabi Jews. Following this, a number of individuals and families from the community left Algeria to join the growing Jewish community in British mandatory Palestine. M’zabi Jews were the only organized Jewish community who left Algeria for Israel. Their history challenges historiography that claims Zionism was unsuccessful in Algeria. M’zabi Jews were not ardent Zionists, but they did take advantage of the opportunities for emigration made possible by international Zionist organizations including the American Joint Distribution Committee and the Jewish Agency. In contrast to the larger history of Algerian Jews, the history of the M’zabi Jewish immigration from Algeria to Israel is part of the larger history of Jewish migrations from the Arab world to Israel after 1945. M’zabi Jews won full French citizenship in late 1961, but most still opted to make their way to Israel rather than France.PhDHistoryUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107212/1/rawall_1.pd

    <i>Plasmodium </i>Condensin Core Subunits SMC2/SMC4 Mediate Atypical Mitosis and Are Essential for Parasite Proliferation and Transmission

    Get PDF
    Condensin is a multi-subunit protein complex regulating chromosome condensation and segregation during cell division. In Plasmodium spp., the causative agent of malaria, cell division is atypical and the role of condensin is unclear. Here we examine the role of SMC2 and SMC4, the core subunits of condensin, during endomitosis in schizogony and endoreduplication in male gametogenesis. During early schizogony, SMC2/SMC4 localize to a distinct focus, identified as the centromeres by NDC80 fluorescence and chromatin immunoprecipitation sequencing (ChIP-seq) analyses, but do not form condensin I or II complexes. In mature schizonts and during male gametogenesis, there is a diffuse SMC2/SMC4 distribution on chromosomes and in the nucleus, and both condensin I and condensin II complexes form at these stages. Knockdown of smc2 and smc4 gene expression reveals essential roles in parasite proliferation and transmission. The condensin core subunits (SMC2/SMC4) form different complexes and may have distinct functions at various stages of the parasite life cycle

    Systematic analysis of Plasmodium myosins reveals differential expression, localisation, and function in invasive and proliferative parasite stages

    Get PDF
    The myosin superfamily comprises of actin‐dependent eukaryotic molecular motors important in a variety of cellular functions. Although well studied in many systems, knowledge of their functions in Plasmodium, the causative agent of malaria, is restricted. Previously, six myosins were identified in this genus, including three Class XIV myosins found only in Apicomplexa and some Ciliates. The well characterized MyoA is a Class XIV myosin essential for gliding motility and invasion. Here, we characterize all other Plasmodium myosins throughout the parasite life cycle and show that they have very diverse patterns of expression and cellular location. MyoB and MyoE, the other two Class XIV myosins, are expressed in all invasive stages, with apical and basal locations, respectively. Gene deletion revealed that MyoE is involved in sporozoite traversal, MyoF and MyoK are likely essential in the asexual blood stages, and MyoJ and MyoB are not essential. Both MyoB and its essential light chain (MCL‐B) are localised at the apical end of ookinetes but expressed at completely different time points. This work provides a better understanding of the role of actomyosin motors in Apicomplexan parasites, particularly in the motile and invasive stages of Plasmodium during sexual and asexual development within the mosquito

    X-linked myotubular myopathy associated with an MTM1 variant in a Maine coon cat.

    Get PDF
    OBJECTIVE: Describe the clinical course and diagnostic and genetic findings in a cat with X-linked myotubular myopathy. CASE SUMMARY: A 7-month-old male Maine coon was evaluated for progressively worsening gait abnormalities and generalized weakness. Neurolocalization was to the neuromuscular system. Genetic testing for spinal muscular atrophy (LIX1) was negative. Given the progressive nature and suspected poor long-term prognosis, the owners elected euthanasia. Histopathology of skeletal muscle obtained post-mortem disclosed numerous rounded atrophic or hypotrophic fibers with internal nuclei or central basophilic staining. Using oxidative reactions mediated by cytochrome C oxidase and succinic dehydrogenase, scattered myofibers were observed to have central dark staining structures and a ring-like appearance. Given the cats age and clinical history, a congenital myopathy was considered most likely, with the central nuclei and ring-like changes consistent with either centronuclear or myotubular myopathy. Whole genome sequencing identified an underlying missense variant in myotubularin 1 (MTM1), a known candidate gene for X-linked myotubular myopathy. NEW OR UNIQUE INFORMATION PROVIDED: This case is the first report of X-linked myotubular myopathy in a cat with an MTM1 missense mutation. Maine coon cat breeders may consider screening for this variant to prevent production of affected cats and to eradicate the variant from the breeding population

    Acute effects of cannabis on speech illusions and psychotic-like symptoms:two studies testing the moderating effects of cannabidiol and adolescence

    Get PDF
    Background Acute cannabis administration can produce transient psychotic-like effects in healthy individuals. However, the mechanisms through which this occurs and which factors predict vulnerability remain unclear. We investigate whether cannabis inhalation leads to psychotic-like symptoms and speech illusion; and whether cannabidiol (CBD) blunts such effects (study 1) and adolescence heightens such effects (study 2). Methods Two double-blind placebo-controlled studies, assessing speech illusion in a white noise task, and psychotic-like symptoms on the Psychotomimetic States Inventory (PSI). Study 1 compared effects of Cann-CBD (cannabis containing Δ-9-tetrahydrocannabinol (THC) and negligible levels of CBD) with Cann+CBD (cannabis containing THC and CBD) in 17 adults. Study 2 compared effects of Cann-CBD in 20 adolescents and 20 adults. All participants were healthy individuals who currently used cannabis. Results In study 1, relative to placebo, both Cann-CBD and Cann+CBD increased PSI scores but not speech illusion. No differences between Cann-CBD and Cann+CBD emerged. In study 2, relative to placebo, Cann-CBD increased PSI scores and incidence of speech illusion, with the odds of experiencing speech illusion 3.1 (95% CIs 1.3–7.2) times higher after Cann-CBD. No age group differences were found for speech illusion, but adults showed heightened effects on the PSI. Conclusions Inhalation of cannabis reliably increases psychotic-like symptoms in healthy cannabis users and may increase the incidence of speech illusion. CBD did not influence psychotic-like effects of cannabis. Adolescents may be less vulnerable to acute psychotic-like effects of cannabis than adults

    Compositional and expression analyses of the glideosome during the Plasmodium life cycle reveal an additional myosin light chain required for maximum motility

    Get PDF
    Myosin A (MyoA) is a Class XIV myosin implicated in gliding motility and host cell and tissue invasion by malaria parasites. MyoA is part of a membrane-associated protein complex called the glideosome, which is essential for parasite motility and includes the MyoA light chain MTIP, and several glideosome-associated proteins (GAPs). However, most studies of MyoA have focused on single stages of the parasite life cycle. We examined MyoA expression throughout the Plasmodium berghei life cycle in both mammalian and insect hosts. In extracellular ookinetes, sporozoites and merozoites, MyoA was located at the parasite periphery. In the sexual stages, zygote formation and initial ookinete differentiation precede MyoA synthesis and deposition, which occurred only in the developing protuberance. In developing intracellular asexual blood stages, MyoA was synthesized in mature schizonts and was located at the periphery of segmenting merozoites, where it remained throughout maturation, merozoite egress and host cell invasion. Besides the known GAPs in the malaria parasite, the complex included GAP40, an additional myosin light chain designated essential light chain (ELC) and several other candidate components. This ELC bound the MyoA neck region adjacent to the MTIP binding site, and both myosin light chains co-located to the glideosome. Co-expression of MyoA with its two light chains revealed that the presence of both light chains enhances MyoA-dependent actin motility. In conclusion, we have established a system to study the interplay and function of the three glideosome components, enabling the assessment of inhibitors that target this motor complex to block host cell invasion

    Pathogenic variants in the paired-related homeobox 1 gene (PRRX1) cause craniosynostosis with incomplete penetrance

    Get PDF
    Purpose Studies previously implicated PRRX1 in craniofacial development, including demonstration of murine Prrx1 expression in the pre-osteogenic cells of the cranial sutures. We investigated the role of heterozygous missense and loss-of-function variants in PRRX1 associated with craniosynostosis. Methods Trio-based genome, exome or targeted sequencing were used to screen PRRX1 in patients with craniosynostosis; immunofluorescence analyses were used to assess nuclear localization of wild-type and mutant proteins. Results Genome sequencing identified 2 of 9 sporadically affected individuals with syndromic/multisuture craniosynostosis who were heterozygous for rare/undescribed variants in PRRX1. Exome or targeted sequencing of PRRX1 revealed a further 9/1449 patients with craniosynostosis harboring deletions or rare heterozygous variants within the homeodomain. By collaboration, seven additional individuals (four families) were identified with putatively pathogenic PRRX1 variants. Immunofluorescence analyses showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localization. Of patients with variants considered likely pathogenic, bicoronal or other multi-suture synostosis was present in 11/17 (65% of the cases). Pathogenic variants were inherited from unaffected relatives in many instances, yielding a 12.5% penetrance estimate for craniosynostosis. Conclusion This work supports a key role for PRRX1 in cranial suture development and shows that haploinsufficiency of PRRX1 is a relatively frequent cause of craniosynostosis

    Foundations of Translational Ecology

    Get PDF
    Ecologists who specialize in translational ecology (TE) seek to link ecological knowledge to decision making by integrating ecological science with the full complement of social dimensions that underlie today\u27s complex environmental issues. TE is motivated by a search for outcomes that directly serve the needs of natural resource managers and decision makers. This objective distinguishes it from both basic and applied ecological research and, as a practice, it deliberately extends research beyond theory or opportunistic applications. TE is uniquely positioned to address complex issues through interdisciplinary team approaches and integrated scientist–practitioner partnerships. The creativity and context-specific knowledge of resource managers, practitioners, and decision makers inform and enrich the scientific process and help shape use-driven, actionable science. Moreover, addressing research questions that arise from on-the-ground management issues – as opposed to the top-down or expert-oriented perspectives of traditional science – can foster the high levels of trust and commitment that are critical for long-term, sustained engagement between partners

    Population genetic structure, antibiotic resistance, capsule switching and evolution of invasive pneumococci before conjugate vaccination in Malawi

    Get PDF
    INTRODUCTION: Pneumococcal infections cause a high death toll in Sub Saharan Africa (SSA) but the recently rolled out pneumococcal conjugate vaccines (PCV) will reduce the disease burden. To better understand the population impact of these vaccines, comprehensive analysis of large collections of pneumococcal isolates sampled prior to vaccination is required. Here we present a population genomic study of the invasive pneumococcal isolates sampled before the implementation of PCV13 in Malawi. MATERIALS AND METHODS: We retrospectively sampled and whole genome sequenced 585 invasive isolates from 2004 to 2010. We determine the pneumococcal population genetic structure and assessed serotype prevalence, antibiotic resistance rates, and the occurrence of serotype switching. RESULTS: Population structure analysis revealed 22 genetically distinct sequence clusters (SCs), which consisted of closely related isolates. Serotype 1 (ST217), a vaccine-associated serotype in clade SC2, showed highest prevalence (19.3%), and was associated with the highest MDR rate (81.9%) followed by serotype 12F, a non-vaccine serotype in clade SC10 with an MDR rate of 57.9%. Prevalence of serotypes was stable prior to vaccination although there was an increase in the PMEN19 clone, serotype 5 ST289, in clade SC1 in 2010 suggesting a potential undetected local outbreak. Coalescent analysis revealed recent emergence of the SCs and there was evidence of natural capsule switching in the absence of vaccine induced selection pressure. Furthermore, majority of the highly prevalent capsule-switched isolates were associated with acquisition of vaccine-targeted capsules. CONCLUSIONS: This study provides descriptions of capsule-switched serotypes and serotypes with potential to cause serotype replacement post-vaccination such as 12F. Continued surveillance is critical to monitor these serotypes and antibiotic resistance in order to design better infection prevention and control measures such as inclusion of emerging replacement serotypes in future conjugate vaccines
    • 

    corecore