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a b s t r a c t

Introduction: Pneumococcal infections cause a high death toll in Sub Saharan Africa (SSA) but the recently
rolled out pneumococcal conjugate vaccines (PCV) will reduce the disease burden. To better understand
the population impact of these vaccines, comprehensive analysis of large collections of pneumococcal
isolates sampled prior to vaccination is required. Here we present a population genomic study of the
invasive pneumococcal isolates sampled before the implementation of PCV13 in Malawi.
Materials and methods: We retrospectively sampled and whole genome sequenced 585 invasive isolates
from 2004 to 2010. We determine the pneumococcal population genetic structure and assessed serotype
prevalence, antibiotic resistance rates, and the occurrence of serotype switching.
Results: Population structure analysis revealed 22 genetically distinct sequence clusters (SCs), which con-
sisted of closely related isolates. Serotype 1 (ST217), a vaccine-associated serotype in clade SC2, showed
highest prevalence (19.3%), and was associated with the highest MDR rate (81.9%) followed by serotype
12F, a non-vaccine serotype in clade SC10 with an MDR rate of 57.9%. Prevalence of serotypes was stable
prior to vaccination although there was an increase in the PMEN19 clone, serotype 5 ST289, in clade SC1
in 2010 suggesting a potential undetected local outbreak. Coalescent analysis revealed recent emergence
of the SCs and there was evidence of natural capsule switching in the absence of vaccine induced selec-
tion pressure. Furthermore, majority of the highly prevalent capsule-switched isolates were associated
with acquisition of vaccine-targeted capsules.
Conclusions: This study provides descriptions of capsule-switched serotypes and serotypes with potential
to cause serotype replacement post-vaccination such as 12F. Continued surveillance is critical to monitor
these serotypes and antibiotic resistance in order to design better infection prevention and control mea-
sures such as inclusion of emerging replacement serotypes in future conjugate vaccines.
� 2017 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction

With over one million deaths and approximately fifteen million
disease episodes annually, Streptococcus pneumoniae (the pneumo-
coccus), is one of the most significant global causes of serious
human infections including pneumonia, bacteremia and meningi-
tis [1]. The highest burden and mortality due to invasive pneumo-
coccal disease (IPD) occurs in resource poor settings such as Sub-
Saharan Africa (SSA). In Malawi, it is the highest cause of bacterial
meningitis [2,3] and the second highest cause of bacteremia [4].
The incidence of adult IPD is estimated at 58 per 100,000 with
the highest rates (108 per 100,000) recorded in adults aged
between 35 and 40 due to high HIV prevalence [5] and rates in chil-
dren substantially higher than this based on hospitalization data
[6]. Nasopharyngeal carriage rates have been reported as 20% in
adults [7] and 42% in children [8] often involving simultaneous car-
riage with multiple serotypes [9].

The heptavalent pneumococcal conjugate vaccine (PCV7),
licensed in 2000 (www.gavi.org) targeted the seven most prevalent
serotypes in the US out of nearly 100 serotypes characterized glob-
ally [10] and is highly effective against vaccine type IPD [11]. In
contrast with the US, there was low theoretical serotype coverage
in SSA (e.g. 40% in Malawi) due to dominance of non-PCV7 targeted
serotypes particularly serotype 1 [8,12]. Despite the high efficacy
of PCV7 [13], following vaccination non-vaccine serotypes became
more common in carriage and IPD, a phenomenon termed serotype
replacement [14]. To guard against the emerging replacement ser-
otypes such as 19A [14] and expand serotype coverage, higher
valency PCVs (PCV10 and PCV13) were licensed. PCV13 was intro-
duced in Malawi in 2011 [15], which targets serotypes 1, 3, 4, 5, 6A,
6B, 7F, 9V, 14, 18C, 19A, 19F and 23F.

Given that changes in the pneumococcal genome particularly
the capsule biosynthesis genes could impact effectiveness of pneu-
mococcal conjugate vaccine formulations, a crucial component of
ensuring sustained prevention of pneumococcal disease will be
monitoring pneumococcal genomic and phenotypic evolution over
time. In Malawi, previous work investigated the genetic structure
of the invasive isolates [16] but due to limitations including a
smaller dataset (n = 134), it was not adequate to effectively resolve
the genetic structure and temporal evolution of the pneumococcal
lineages. Here we extend this analysis to conduct a population
genomic analysis of whole genome sequenced invasive isolates
(n = 585) sampled over a seven-year period (2004–2010) before
the implementation of PCV13 vaccine in November 2011 in
Malawi. Due to the fact that pneumococci frequently switch their
serotype by swapping genes between different serotypes involved
in capsule biosynthesis, we analysed the serotype and lineage dis-
tribution, antibiotic resistance, temporal evolution and capsule
switching in context of genetic structure of the isolates.

2. Materials and methods

We retrospectively sampled 585 invasive pneumococcal iso-
lates from blood and cerebral spinal fluid (CSF) from the bacterial
isolate archive at the Malawi-Liverpool-Wellcome Trust Clinical
Research Programme for whole genome sequencing (Supplemental
Table S1). The isolates were sampled blindly of the serotype in
order to represent their prevalence in IPD and not based on inclu-
sion based on their serotypes. The isolates in the archive were col-
lected from patients at the Queen Elizabeth Central Hospital in
Blantyre, the largest referral hospital in Southern Malawi. We
extracted DNA using QIAamp DNA mini kit, QIAgen Biorobot (Qia-
gen, Hilden, Germany), and Wizard� DNA Genomic DNA Purifica-
tion Kit (Promega, WI, USA). DNA sequencing was done at the
Wellcome Trust Sanger Institute using Illumina Genome Analyzer

II and HiSeq platforms (Illumina, CA, USA). Whole genome align-
ment, sequence assembly, phylogeny construction, recombination
detection, detection of antibiotic resistance genes, coalescent, and
statistical analyses were done as described in Supplemental Mate-
rials and Methods. Sequence typing and serotyping were done
using multilocus sequence typing (MLST) [17,18], and PCR [19]
and genomic approach respectively [20]. The sequence reads for
the isolates were deposited in the European Nucleotide Archive
(www.ebi.ac.uk/ena) and their accession numbers are provided in
Supplemental Table S1. We used disc diffusion for antibiotic sus-
ceptibility testing and interpreted the findings using the British
Society Antimicrobial Chemotherapy (BSAC) guidelines. The study
was approved by the University of Malawi’s College of Medicine
Research and Ethics Committee (approval number: P08/14/1614).

3. Results

3.1. Characteristics of pneumococcal isolates before vaccination

Pneumococcal isolates from blood and CSF were collected from
adults and children through routine pathogen surveillance at the
Queen Elizabeth Central Hospital, the largest referral hospital in
Blantyre, Malawi. We sequenced a randomly sample of 585 isolates
from collection of >5000 pneumococcal isolates from 2004 to 2010
for whole genome sequencing in order to determine the pneumo-
coccal genomic epidemiology and evolution pre-PCV13 implemen-
tation in 2011 (Fig. 1A and B and Table S1). Of these samples, 65.5%
and 38.5% of the isolates were from blood and cerebrospinal fluid
(CSF) respectively. By vaccine status, 68.7% of the study isolates
contained a vaccine type (VT) serotype targeted by the PCV13 vac-
cine formulation. Although the number of isolates collected were
higher in children <5 years old and adults above 30 years old, the
prevalence of vaccine type (VT) serotypes decreased consistently
with increasing age (Fig. S1A–C). The prevalence of serotypes also
varied by these age groups, with some serotypes common in the
under fives.

3.2. Genetic population structure analysis reveals high population
diversity

To determine the pneumococcal population structure and
diversity, we did comparative genomic analysis of the isolates by
clustering the isolates into sequence clusters (SC) using an unsu-
pervised Bayesian hierarchical clustering approach [21]. Such SCs
defines the unique subpopulations of genetically similar isolates,
which are predominantly of the same serotype but some SCs con-
tained multiple serotypes because of serotype switching due to
recombination-mediated swapping of genes between isolates of
different capsule types (Fig. 1C). Overall 22SCs were identified
and of these 22 SCs, SCs 1–21 were monophyletic with a single
common ancestor while SC22 had multiple common ancestors
and thus it was polyphyletic (Fig. 1D). Due to the inclusion of more
isolates in this study, the number of SCs identified were identified
than in a previous study [22]. Because of the high sequence diver-
sity in SC22, our analysis of SCs focuses largely on SCs 1–21. Over-
all, the sequenced samples were comprised of 46 serotypes and
134 sequence types (ST).

3.3. Prevalence of pneumococcal serotypes and SCs – high dominance
of serotype 1 lineage

The most dominant monophyletic SC was SC2 and was com-
prised of only serotype 1 isolates (19.3%) which are mostly
(84.96%) of multi locus sequences type 217 (ST217, also known as
Sweden1-27 or PMEN27) [23,24] (Figs. 1C, 2A). The prevalence of
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serotype 1 peaked in adolescents (Fig. 2B). Other dominant sero-
types included serotype 6A (10.8%) in multiple SCs including SC3
(ST2902), SC15 (ST2285/ST9532) and SC21 (ST2987), serotype 5
(9.2%) in SC1 (ST289) and serotype 23F (6.2%) in SC8 (ST802). Other
SCs with only a single serotype included serotypes 5 in SC1 (ST289)
or Colombia5-19 (PMEN19) [25], 16F in SC5 (predominantly ST705),
19A in SC4 (ST9457), 10B in SC7 (ST7055), 23F in SC8 (ST802), 6A in
SC15 (ST9532), 12B in SC16 (ST10583), 4 in SC20 (ST2213) and 6A in
SC21 (ST2987). Other SCs contained multiple serotypes such as
SC12, a PMEN25 (Sweden15A-25) lineage, which contained ST63
isolates revealing a serotype switch in Malawi from serotype 15A
to serotype 14 [26]. The annual prevalence of serotypes was stable
temporally although prevalence of serotype 1 appeared to decline
but this was likely due to sampling bias. Conversely, prevalence
of serotype 5, which was largely from 2004 to 2009 showed an
increased prevalence in 2010, which suggested the occurrence of
an undetected small-scale local outbreak in 2010 (Fig. S2).

3.4. Antibiotic resistance rates in different serotypes

Phenotypically, antibiotic resistance rates were variable with
highest rates associated with cotrimoxazole (93.91%) followed by
tetracycline (50.63%), chloramphenicol (27.29%) and penicillin
(10.37%) while low resistance was associated with erythromycin
(1.6%) and ceftriaxone (0.38%) (Fig. 3A). Because of limited or
unavailability of phenotypic data, resistance rates for cefaclor
and ampicillin are not presented. Highest multidrug resistance
(MDR) rate was observed among the serotype 1 isolates (81.91%),
which harbored isolates mostly resistant to tetracycline (94.34%),
cotrimoxazole (96.74%) and chloramphenicol (86.11%). Overall,
there was higher resistance among VT than NVT isolates for tetra-
cycline (p < 0.0001), chloramphenicol (p = 0.003) and cotrimoxa-
zole (p = 0.01) but not the other antibiotics although prevalence
of penicillin resistant isolates appeared to be slightly higher in
NVTs than for VTs (Fig. 3A). Serotype 12F (SC10), an NVT serotype,

Fig. 1. Pneumococcal genetic population structure pre-vaccination in Malawi. (A) Map of Africa and Malawi showing the sampling location of the isolates. (B) Number of
pneumococcal isolates from blood and cerebrospinal fluid (CSF) sequenced every year. (C) Stacked bar plot showing number of isolates of in serotypes with at least 3%
prevalence. All other serotypes were grouped as ‘other’. The bars are categorized by sequence cluster (SC). (D) Maximum likelihood phylogeny annotated with the sequence
clusters (SCs) showing genetic relationships of the isolates. Both SCs and serotypes are labelled on the tree and branches for the monophyletic SCs (SC1-21) are colored in
non- colors while SC22 (polyphyletic clade) is colored in . The phylogeny was out-group rooted using a classical non-typeable (NT) isolate obtained from carriage.
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showed the second highest MDR rate (57.9%) after serotype 1 iso-
lates (Fig. 3B).

3.5. Most pneumococcal lineages showed recent emergence

Where we were able to calibrate a molecular clock, we esti-
mated the time of emergence and mutation rates for the SCs using
BEAST [27]. Only five SCs namely SC1, SC2, SC3, SC5 and SC11
revealed sufficient molecular-clock signal and were used for coa-
lescent analysis (Fig. S3). The mean mutation rates for the SCs ran-
ged from 6.46 � 10�06 to 1.13 � 10�05 SNPs/site/year, which
equated to the introduction of one to as high as twenty-five SNPs
in the genomes per year (Fig. S4). Serotype 1 in SC2 was highly clo-
nal and coalescent analysis showed that it emerged recently�1987
(95% credible interval [CI]:1981–1992) and was the ancestral sero-
type 1 ST in Malawi (Fig. 4). Since the emergence of SC2, serotype 1
isolates have shown high stability in their relative genetic diversity

(or the effective population size) with no observable changes in
antimicrobial resistance rates. Clade SC5, which contains serotype
16F showed the most recent emergence (�2004) while the other
SCs emerged in 1980s similarly to SC2 (Fig. S3). Serotype 5 isolates
in SC1 dates back to�1983 (95% CI:1971–1992), SC3 (6A) in�1988
(95% CI:2002–1961), serogroup 7 (7A/F) isolates in SC11 emerged
in �1970 although this may not be very reliable due to the large
confidence intervals (95% CI:1845–1998).

3.6. High occurrence of non-PCV13 induced capsule switching

Pneumococcal isolates can switch their serotype (capsule)
through mutations and recombination in the capsule biosynthesis
locus [28]. Certain serotypes particularly those with high intra-
serotype sequence diversity such as serotypes 6A, 19A, 18B/C and
those associated with more SCs were associated with multiple
SCs due to non-PCV13 induced capsule switching (Fig.5A–C).
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Capsule-switched serotypes were inferred as the isolates with
identical STs but different serotypes and in some case genetically
related isolates with different STs but identical serotypes. Because
a serotype is a derived trait (phenotype), assigning directionality of
a serotype switch was based on either the genetic relatedness of
the switched strains or their prevalence whereby the acquired cap-
sule was already associated with another dominant lineage. Occur-
rence of capsule switching between very closely related isolates
reflected their recent occurrence as such the potential original ser-
otypes could be inferred (Table 1). On the other hand, the original
serotypes could not be determined for non-recent switches espe-
cially where there was replacement of the original serotype in
the SCs due to successful clonal expansion of the capsule-
switched serotype. Examples of non-recent capsule switches
included acquisitions of serotype 6A in multiple SCs such as SC3,
SC15 and SC21 (Fig. 5D, Fig. S5). Majority of the recent capsule
switches occurred not between isolates of the same ST (e.g.
ST36117F ? ST3616A in SC13) but also of the same serogroup (e.g.
ST98912F ? ST98912B in SC10) (Table 1). Serotype within identical
serogroups reflected occurrences of spontaneous mutations in
the capsule biosynthesis locus (e.g. ST29026A ? ST29026B in SC3)
while recombination caused switches between serogroups (e.g.
ST508023A ? ST50809A in SC22). Although occurrence of capsule-
switches did not vary between VT and NVT serotypes, switches
to VT serotypes appeared to result in higher prevalence of the
capsule-switched isolates than NVT serotypes (Table 1).

4. Discussion

In this study we demonstrate the pneumococcal genetic popu-
lation structure before introduction of PCV13 vaccine in Malawi.
We found a high serotype and clonal diversity in Malawi and dom-

inance of serotype 1 lineage (SC2), which was associated with
highest antibiotic resistance rates. The prevalence of other sero-
types remained stable although there was an increase in preva-
lence of PMEN19 isolates (SC1) in 2010. We also showed recent
important or emergence of different pneumococcal lineages and
serotypes using coalescent analysis, and high levels of
recombination-mediated natural capsule switching in the absence
of vaccine induced selection pressure. Some capsule switched lin-
eages underwent successful clonal expansion over time resulting
in the formation of multiple lineages with identical serotypes.

Serotype 1 (SC2) is common in SSA hence its dominance in
Malawi to cause 19.3% of the IPD was not unexpected [29–32].
Other serotypes such as serotype 5 (SC1) ST289 largely absent else-
where such as in the USA [33], serotype 23F (SC8) largely ST802
and 6A (multiple STs and SCs) were also common in Malawi partic-
ularly in the under-five aged children. Although PMEN clones are
globally prevalent [34], only three PMEN clones namely PMEN19
(SC1), PMEN25 (SC12) and PMEN27 (SC2) were identified in
Malawi consistent with previous data [16]. While both PMEN19
and PMEN27 were associated with serotypes 5 and 1 respectively
as in other countries, PMEN25 isolates in Malawi were associated
with only serotype 14 but elsewhere it has been associated with
both serotypes 15A and 19A [35] suggesting the occurrence of
ST6315A ? ST6314 capsule switch in Malawi.

It has been shown that there was a decrease in IPD incidence
from six years prior to PCV13 implementation in Malawi in 2011
[3,6], however, our findings suggest this was not associated with
decrease in specific serotypes but possibly an increased population
host immunity possibly due to the nationwide scale-up of
antiretroviral therapy (ART), cotrimoxazole prophylaxis and food
security as previously reported [6,37]. While our dataset suggested
a decrease in prevalence of serotype 1 during the study period, this
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may reflect sampling bias for serotype 1 isolates particularly
between 2009 and 2010 due to sequencing of serotype 1 isolates
for another study [36]. This was confirmed using by randomly
serotyping isolates from the archive (unpublished data), which
showed no decrease in prevalence of serotype 1 but an increase
in serotype 5 in 2010 possibly because of a local outbreak, although
our findings appeared to overestimate the increase of serotype 5 in
2010 due to under sampling of serotype 1. Coalescent analysis of
serotype 1 isolates showed stable population sizes, which provides
further evidence that serotype 1’s population did not change pre-
vaccination. These findings show that the pneumococcal popula-
tion structure was stable before vaccination despite the decrease
in disease incidence, which was driven by increased population
immunity rather than decrease of certain serotypes.

Emergence and clonal expansion of antibiotic resistant strains
complicates treatment and increases likelihood for severe out-
comes because of treatment failure [38]. Highest resistance rates
were unexpectedly observed in serotype 1 (SC2), which is atypical
and challenges conventional knowledge that rarely carried are usu-
ally associated with low antimicrobial resistance rates due to lim-
ited recombination [39]. The reported antibiotic resistance rates in
Malawi are similar to those in other African settings [31,40] but are
higher than observed before vaccination in high income countries
including USA with the exception of penicillin and macrolide (ery-
thromycin), which are associated with higher resistance in the USA
[41] but in Malawi are associated with very low resistance rates.
The observation that highly resistant antibiotics (tetracycline,
chloramphenicol and cotrimoxazole) were associated with higher
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resistance among VT than NVT isolates suggest that their resis-
tance rates will decrease post-PCV13 implementation but peni-
cillin resistance may increase slightly because of its higher
prevalence among NVTs than VTs although this was not statisti-
cally significant. An increase of NVT serotypes post-vaccination
such as 12F (SC10), which showed the second highest MDR rate
(57.9%) in Malawi after serotype 1 (81.9%) remain a significant con-
cern. Serotype 12F exhibits high attack rate [42] and has been asso-
ciated with outbreaks globally [43,44]. Together these data suggest
that while implementation of PCV13 will reduce the disease bur-
den and antimicrobial resistance rates but continued surveillance
to monitor potential replacement serotypes such as serotype 12F
to remain crucial.

Capsule switching occurs predominantly due to recombination
and it leads to the emergence of vaccine escape serotypes
[28,45]. Such capsule switching is more likely to occur in settings

with high levels of recombination such as in Malawi [22] where
it may promote the emergence of vaccine-escape serotypes. Our
study showed high occurrence of capsule-switching across the
phylogeny and in some of the lineages the capsule-switch variants
were highly successful and subsequently replaced the original ser-
otype as clearly depicted by the existence of multiple lineages of
same serotype such as serotype 6A in SC3, SC15 and SC21. How-
ever, with regards to serotype replacement, most capsule-switch
variants with an NVT capsule were of low prevalence than VT-
associated capsule-switch variants suggesting that majority of
the pre-existing capsule-switched variants will be cleared post-
vaccination. Further analysis showed recent emergence of the
pneumococcal lineages in Malawi, which suggests recent importa-
tion or clonal expansion of certain sub-clades.

Several limitations need to be acknowledged. Firstly, we did not
perform temporal analysis of the serotypes because of potential
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under sampling of serotype 1 isolates between 2008 and 2010 but
this did not affect our estimates of serotype prevalence because we
did pooled analysis of the samples. Secondly, we did not include
carriage samples in our analysis, which would have revealed addi-
tional serotypes not common in IPD but cause carriage in Malawi.
Thirdly, due to fewer number of isolates sampled in certain years,
our dataset was not equipped to accurately show changes in the
prevalence of serotypes over time.

In conclusion, this study shows a high genetic diversity and sta-
bility of pneumococcal lineages and serotypes before the imple-
mentation of PCV13 vaccine in 2011. Serotype 1 accounted for
majority of the IPD cases but the observation of highest resistance
rates in this serotype defies conventional knowledge that infre-
quently carried pneumococcal lineages are typically susceptible
to antibiotics due to limited recombination. While occurrence of
natural capsule switching was evident, our findings suggest that
serotype replacement post-PCV13 implementation is likely to be
due to clonal expansion of NVT lineages rather than pre-existing
capsule switched serotypes because highly prevalent acquired
capsule-types were commonly associated with acquisition of
vaccine-targeted capsules. The recent emergence of pneumococcal
lineages and serotypes, and the potential emergence of replace-
ment serotypes post-vaccination shows that continued surveil-
lance is crucial to understand the pneumococcal epidemiology
and to inform infection prevention and control strategies. The
baseline genomic data provided in this study will enable more
accurate analysis of the lineage-specific changes in serotype distri-
bution post-PCV13 implementation in Malawi.
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