1,156 research outputs found

    Health monitoring of federated future internet experimentation facilities

    Get PDF
    The federation of Future Internet testbeds as envisaged by the Fed4FIRE project is a complex undertaking. It combines a large number of existing, independent testbeds in a single federation, and presents them to the experimenter as if it were a single infrastructure. Operating and using such an infrastructure requires a profound knowledge of the status of the health of the underlying independent systems. Inspired by network monitoring techniques used to operate the Internet today, this paper considers how a centralized health monitoring system can be set up in a federated environment of Future Internet Experimentation Facilities. We show why it is a vital tool for experimenters and First Level Support in the federation, which health monitoring information must be captured, and how this information can be displayed most appropriately

    Transport kinetics of ectoine, an osmolyte produced by Brevibacterium epidermis

    Get PDF
    Brevibacterium epidermis DSM 20659 is a halotolerant Gram-positive bacterium which can synthesize the osmolyte, ectoine, but prefers to take it up from its environment. The present study revealed that B. epidermis is equipped with at least one transport system for ectoine, with a maximal transport velocity of 15.7 +/- 4.3 nmol/g CDW center dot min. The transport requires energy (ATP) and is completely inhibited by the proton uncoupler, CCCP. The ectoine uptake system is constitutively expressed at a basal level of activity and its activity is immediately 10-fold increased by hyper-osmotic stress. Initial uptake rates are not influenced by the intensity of the hyper-osmotic shock but the duration of the increased activity of the uptake system could be directly related to the osmotic strength of the assay solution. Competition assays indicate that betaine, but not proline, is also transported by the ectoine uptake system

    1,8-Bis[3-(triethoxy­silyl)prop­yl]-1,8-diazo­niatricyclo­[9.3.1.14,8]hexa­decane diiodide

    Get PDF
    The organic mol­ecule of title compound, C30H66N4O6Si2 2+·2I−, is located around a centre of symmetry. The structure exhibits disorder of the trieth­oxy groups with the ratios 0.78 (1)/0.22 (1), 0.67 (1)/0.33 (1) and 0.58 (1)/0.42 (1)

    A general method for the synthesis of nanostructured large-surface-area materials through the self-assembly of functionalized nanoparticles

    Get PDF
    A general synthetic method for the preparation of nanostructured materials with large surface area was developed by using nanoparticle building blocks. The preparation route involves the self-assembly of functionalized nanoparticles in a liquid-crystal phase. These nanoparticles are functionalized by using difunctional amino acid species to provide suitable interactions with the template. Optimum interactions for self-assembly of the nanoparticles in the liquid-crystal phase were achieved with one -NH2 group anchored to the nanoparticle surface per 25 Å2. To maximize the surface area of these materials, the wall thicknesses are adjusted so that they are composed of a monolayer of nanoparticles. To form such materials, numerous parameters have to be controlled such as the relative volume fraction of the nanoparticles and the template and size matching between the hydrophilic component of the copolymer and nanoparticles. The surface functionalization renders our synthetic route independent of the nanoparticles and allows us to prepare a variety of nanostructured composite materials that consist of a juxtaposition of different discrete oxide nanoparticles. Examples of such materials include CeO2, ZrO2, and CeO2–Al(OH)3 composites
    corecore