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1 Introduction

In this research, we consider a novel data model that can be used to solve the Vehicle

Routing Problem (VRP) with several of its specializations encountered in the real

world.

The basic Vehicle Routing Problem is an optimization problem in which a number

of customers have to be served with a fleet of vehicles, while minimizing the cost for

doing so. As this problem has many applications in the fields of transportation, logistics

and distribution, several specializations exist. The Vehicle Routing Problem with De-

pendencies (VRPD) adds restrictions to the order in which customers are served. A de-

pendency between customers indicates a “must happen before”-relationship: tc1 < tc2.

The Capacitated Vehicle Routing Problem (CVRP) constrains the maximum amount of

cargo that a vehicle can carry at any time. The Vehicle Routing Problem with Pick-up

and Delivery (VRPPD) is a further specialization of the CVRP and the VRPD, in

which cargo is picked up at a customer’s location, and has to be delivered to another

customer. The delivery event can only happen after the pickup event has been com-

pleted. The Vehicle Routing Problem with Time Windows (VRPTW) is a variation in

which each event has a time window in which it has to be completed: when the vehicle

arrives before the earliest allowed time, it has to wait at that location until the time

window opens. Ending an event after the time window is prohibited. In the basic VRP,

all vehicles start and end at the same location, called the depot. In the Multiple Depot

Verhicle Routing Problem (MDVRP), this restriction is loosened, and each vehicle can

have its own location.

Most current research focuses on modeling the VRP and its extensions as an Integer

Programming (IP) problem. In this research, we propose a novel approach, in which

the problem is modeled in a directed acyclic graph (DAG). Combined with heuristics

that incorporate domain knowledge of the VRP and its specializations, it proves to be

an efficient approach.
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2 Modeling the VRP as a DAG

Let G = (V,A) be a directed graph. Each vertex v represents an event, consisting

of a location Loc(v) and duration D(v). It can also contain a timestamp tv, that

signifies when the event is executed. When the event isn’t part of the planning, this

timestamp field is left empty. Depending on the type of VRP-problem being solved,

additional properties can be added. In our model, there are two types of vertices: event

vertices and depot vertices. An event vertex v represents a customer being serviced. In

the CVRP it has a capacity delta ∆v. A depot vertex represents the depot where the

vehicle leaves from and returns to. As we try to model the problem as an acyclic graph,

each depot is duplicated into two depot vertices: each tour starts in a depot start vertex

and ends in a depot end vertex.

An edge e = 〈v1, v2〉 between two vertices denotes a relationship between two

events. In our DAG model, we define several types of edges to denote the various

relationships between events. A planning edge depicts the most important connection

between two events: when a vehicle drives from event e1 to event e2, a planning edge is

added from ve1 to ve2. As this edge signifies a movement of a vehicle, it has a duration

D(e): the time it takes to get from Loc(ve1) to Loc(ve2). In the CVRP, this edge

also has a load le. This load must be between 0 and the maximum capacity of the

vehicle. For the VRPD, a second edge type is introduced: the dependency edge. This

edge signifies that the event e1 must happen before the event e2: tv1 +D(v1) < tv2.

For the VRPTW, we enhance the DAG by adding two time windows to each vertex:

the given time window and the actual time window. The given time window [ťv, t̂v]

indicates the earliest start time and the latest end time for the event. For an event

vertex, this is defined by the customer. In a depot vertex, this time window is equal to

the operation hours of the vehicle. The actual time window [τ̌v, τ̂v] is initially equal

to the given time window, but is further constrained by the incoming and outgoing

edges. The minimum start time imposed by an edge e = 〈v1, v2〉 can be computed as

follows: MST (v2) = MST (v1)+D(v1)+D(e). Computing the maximum end time can

be done analogously. When one of the bounds of the time window changes, this has

to be propagated throughout the DAG. Because no cycles are allowed, this updating

process cannot result into infinite loops. The window can never become smaller than

the duration of the event, ensuring that the planning remains feasible.

2.1 Usage of the DAG model

At first, the DAG has to be initialized. For every customer that has to be served, an

event vertex is created with an empty timestamp. For each vehicle that is available,

two depot vertices are added. Between these two vertices, a planning edge is added

with duration 0.

To add an event c to the route of a vehicle between event a and b, the planning

edge 〈va, vb〉 is removed, and two new planning edges 〈va, vc〉 and 〈vc, vb〉 are added.

The durations of these edges are efficiently calculated via a separate routing engine.

Additionally, the timestamp of vertex vc is set, or in the case of the VRPTW, the

bounds of the time windows are updated: the maximum end time is recomputed for

vertex a and c, the minimum start time is recomputed for vertex b and c.



2.2 Abstracting orders and tasks

In real-world scenarios, logistic companies have to deal with orders that consist of

multiple events. Either an order is added to the planning, and all associated events

have to be executed, or it is held back and none of the events are executed. When two

or more events have to be executed by the same courier (ex. a pickup and delivery of a

package), we call them a task. One order can consist out of multiple tasks, for example

when a package is stored in an intermediate storage and delivered by another courier.

The proposed model only contains events, and makes abstraction of tasks and

orders. These are however inherently present in the DAG, as events of the same task

typically have a dependency between them. When an order contains multiple tasks,

the event of these tasks will also be connected by a dependency edge.

The insertion and removal heuristics used are responsible for inserting and removing

all related events to a planning. When events of an order are partially added to a

planning, their timing will immediately be reflected in the actual time windows of all

events that are connected through dependencies. When a partial planning of an order

makes the planning infeasible to be executed, this will become clear as the actual time

window cannot be made smaller than the duration of that event.

3 Planning Heuristics using the DAG

Since the formulation of the VRP[1], a tremendous amount of research has been done[2].

We are currently in the process of trading off the most promising heuristics that can

be adapted for usage with the DAG described above. Adopting insertion heuristics is

currently the most promising approach, as they can benefit from the efficient updating

of the actual time windows, instead of having to perform extensive checks. Next to

that, optimization heuristics like Lin-Kernighan[3] can also benefit from the proposed

model, but require multiple operations on the DAG. By employing a styled version

of the DAG structure, we focus on efficient implementations of the most occurring

primitive operations, trading off execution time with less occurring primitives.

In our approach, we pay attention mostly to the implementation details of the

different algorithms and data structures. Careful implementation and corresponding

design techniques do pay off dividends, even in the short term. For the current project,

further research is needed to determine how this affects the performance of the tech-

niques described above.
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