260 research outputs found

    Trabecular bone volume and osteoprotegerin expression in uremic rats given high calcium

    Get PDF
    Calcium (Ca)-containing phosphate binders have been recommended for the treatment of hyperphosphatemia in children with chronic kidney disease. To study the effects of high Ca levels on trabecular bone volume (BV) and osteoprotegerin (OPG) expression in uremic young rats, a model of marked overcorrection of secondary hyperparathyroidism was created by providing a diet of high Ca to 5/6 nephrectomized young rats (Nx-Ca) for 4 weeks. The results of chondrocyte proliferation and apoptosis, osteoclastic activity, OPG expression and BV were compared among intact rats given the control diet, intact rats given a high Ca diet and 5/6 nephrectomized rats given the control diet (Nx-Control) and the high Ca diet (Nx-Ca). Ionized Ca levels were higher and parathyroid hormone levels were lower in Nx-Ca rats than in the other groups. Final weight, final length and final tibial length of Nx-Ca rats were significantly less than those of the other groups, although the length gain did not differ among the groups. The hypertrophic zone width was markedly enlarged in Nx-Ca rats. Chondrocyte proliferation rates did not differ among the groups, whereas osteoclastic activity was decreased in Nx-Ca rats compared with the Nx-Control animals. The OPG expression and BV were increased in Nx-Ca rats compared with the Nx-Control rats. Increased BV should improve bone strength, whereas disturbance of osteoclastogenesis interferes with bone remodeling. Bone quality has yet to be determined in high Ca-fed uremic young rats

    Serum levels of osteoprotegerin and receptor activator of nuclear factor -κB ligand in children with early juvenile idiopathic arthritis: a 2-year prospective controlled study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The clinical relevance of observations of serum levels of osteoprotegerin (OPG) and receptor activator of nuclear factor -κB ligand (RANKL) in juvenile idiopathic arthritis (JIA) is not clear. To elucidate the potential role of OPG and RANKL in JIA we determined serum levels of OPG and RANKL in patients with early JIA compared to healthy children, and prospectively explored changes in relation to radiographic score, bone and lean mass, severity of the disease, and treatment.</p> <p>Methods</p> <p>Ninety children with early oligoarticular or polyarticular JIA (ages 6-18 years; mean disease duration 19.4 months) and 90 healthy children individually matched for age, sex, race, and county of residence, were examined at baseline and 2-year follow-up. OPG and RANKL were quantified by enzyme-immunoassay. Data were analyzed with the use of t-tests, ANOVA, and multiple regression analyses.</p> <p>Results</p> <p>Serum OPG was significantly lower in patients than controls at baseline, and there was a trend towards higher RANKL and a lower OPG/RANKL ratio. Patients with polyarthritis had significantly higher increments in RANKL from baseline to follow-up, compared to patients with oligoarthritis. RANKL was a significant negative predictor for increments in total body lean mass. Patients who were receiving corticosteroids (CS) or disease-modifying antirheumatic drugs (DMARDs) at follow-up had higher OPG/RANKL ratio compared with patients who did not receive this medication.</p> <p>Conclusions</p> <p>The data supports that levels of OPG are lower in patients with JIA compared to healthy children, and higher levels of RANKL is associated with more serious disease. RANKL was a significant negative predictor of lean mass in patients with JIA. The OPG/RANKL ratio was higher in patients on DMARDs or CS treatment.</p

    No significant effect on bone mineral density by high doses of vitamin D3 given to overweight subjects for one year

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In meta-analyses supplementation with vitamin D appears to reduce incidence of fractures, and in cross-sectional studies there is a positive association between serum 25-hydroxyvitamin D (25(OH)D) levels and bone mineral density (BMD). However, the effect of supplementation with high doses of vitamin D on BMD is more uncertain and could in theory have both positive and negative effects.</p> <p>Methods</p> <p>The study was a one year, double blind placebo-controlled intervention trial performed at the University Hospital of North Norway. 421 subjects, 21 - 70 years old, were included and 312 completed the study. The subjects were randomized to vitamin D<sub>3 </sub>40.000 IU per week (DD group), vitamin D<sub>3 </sub>20.000 IU per week (DP group), or placebo (PP group). All subjects were given 500 mg calcium daily. Serum 25(OH)D, osteoprotegrin (OPG), receptoractivator of nuclear factor-kappaB ligand (RANKL), and BMD at the lumbar spine and the hip were measured before and at the end of the study.</p> <p>Results</p> <p>At baseline the mean serum 25(OH)D levels were 58 nmol/L (all subjects) and increased to 141 and 100 nmol/L in the DD and DP groups, respectively. After one year, no significant differences were found between the three groups regarding change in BMD, serum OPG or RANKL.</p> <p>Conclusions</p> <p>Supplementation with high doses of vitamin D for one year does not appear to have a negative effect on BMD in healthy subjects. In order to disclose a positive effect, subjects with low BMD and/or low serum 25(OH)D levels need to be studied.</p> <p>Trial registration</p> <p>The trial was registered at ClinicalTrials.gov (NCT00243256).</p

    In Vivo Imaging of Transiently Transgenized Mice with a Bovine Interleukin 8 (CXCL8) Promoter/Luciferase Reporter Construct

    Get PDF
    One of the most remarkable properties of interleukin 8 (CXCL8/IL-8), a chemokine with known additional functions also in angiogenesis and tissue remodeling, is the variation of its expression levels. In healthy tissues, IL-8 is barely detectable, but it is rapidly induced by several folds in response to proinflammatory cytokines, bacterial or viral products, and cellular stress. Although mouse cells do not bear a clear homologous IL-8 gene, the murine transcriptional apparatus may well be capable of activating or repressing a heterologous IL-8 gene promoter driving a reporter gene. In order to induce a transient transgenic expression, mice were systemically injected with a bovine IL-8 promoter–luciferase construct. Subsequently mice were monitored for luciferase expression in the lung by in vivo bioluminescent image analysis over an extended period of time (up to 60 days). We demonstrate that the bovine IL-8 promoter–luciferase construct is transiently and robustly activated 3–5 hours after LPS and TNF-α instillation into the lung, peaking at 35 days after construct delivery. Bovine IL-8 promoter–luciferase activation correlates with white blood cell and neutrophil infiltration into the lung. This study demonstrates that a small experimental rodent model can be utilized for non-invasively monitoring, through a reporter gene system, the activation of an IL-8 promoter region derived from a larger size animal (bovine). This proof of principle study has the potential to be utilized also for studying primate IL-8 promoter regions

    Malignant melanoma and bone resorption

    Get PDF
    The cellular and humoral mechanisms accounting for osteolysis in skeletal metastases of malignant melanoma are uncertain. Osteoclasts, the specialised multinucleated cells that carry out bone resorption, are derived from monocyte/macrophage precursors. We isolated tumour-associated macrophages (TAMs) from metastatic (lymph node/skin) melanomas and cultured them in the presence and absence of osteoclastogenic cytokines and growth factors. The effect of tumour-derived fibroblasts and melanoma cells on osteoclast formation and resorption was also analysed. Melanoma TAMs (CD14+/CD51−) differentiated into osteoclasts (CD14−/CD51+) in the presence of receptor activator for nuclear factor κB ligand (RANKL) and macrophage-colony stimulating factor. Tumour-associated macrophage-osteoclast differentiation also occurred via a RANKL-independent pathway when TAMs were cultured with tumour necrosis factor-α and interleukin (IL)-1α. RT–PCR showed that fibroblasts isolated from metastatic melanomas expressed RANKL messenger RNA and the conditioned medium of cultured melanoma fibroblasts was found to be capable of inducing osteoclast formation in the absence of RANKL; this effect was inhibited by the addition of osteoprotegerin (OPG). We also found that cultured human SK-Mel-29 melanoma cells produce a soluble factor that induces osteoclast differentiation; this effect was not inhibited by OPG. Our findings indicate that TAMs in metastatic melanomas can differentiate into osteoclasts and that melanoma fibroblasts and melanoma tumour cells can induce osteoclast formation by RANKL-dependent and RANKL-independent mechanisms, respectively

    Profiling Insulin Like Factor 3 (INSL3) Signaling in Human Osteoblasts

    Get PDF
    Abstract BACKGROUND: Young men with mutations in the gene for the INSL3 receptor (Relaxin family peptide 2, RXFP2) are at risk of reduced bone mass and osteoporosis. Consistent with the human phenotype, bone analyses of Rxfp2(-/-) mice showed decreased bone volume, alterations of the trabecular bone, reduced mineralizing surface, bone formation, and osteoclast surface. The aim of this study was to elucidate the INSL3/RXFP2 signaling pathways and targets in human osteoblasts. METHODOLOGY/PRINCIPAL FINDINGS: Alkaline phosphatase (ALP) production, protein phosphorylation, intracellular calcium, gene expression, and mineralization studies have been performed. INSL3 induced a significant increase in ALP production, and Western blot and ELISA analyses of multiple intracellular signaling pathway molecules and their phosphorylation status revealed that the MAPK was the major pathway influenced by INSL3, whereas it does not modify intracellular calcium concentration. Quantitative Real Time PCR and Western blotting showed that INSL3 regulates the expression of different osteoblast markers. Alizarin red-S staining confirmed that INSL3-stimulated osteoblasts are fully differentiated and able to mineralize the extracellular matrix. CONCLUSIONS/SIGNIFICANCE: Together with previous findings, this study demonstrates that the INSL3/RXFP2 system is involved in bone metabolism by acting on the MAPK cascade and stimulating transcription of important genes of osteoblast maturation/differentiation and osteoclastogenesis

    Serum RANKL, osteoprotegerin (OPG), and RANKL/OPG ratio in nephrotic children

    Get PDF
    Receptor activator of NF-kB ligand (RANKL) and osteoprotegerin (OPG) play key roles in the pathogenesis of glucocorticoid-induced osteoporosis (GIO). The aim of our study was to determine whether the cumulative glucocorticoid dose (CGCS) in children with idiopathic nephrotic syndrome (INS) has any effect on the concentration of serum RANKL and OPG and the RANKL/OPG ratio. The study population consisted of 90 children with INS, aged 3–20 years, who were treated with GCS. These children were divided into two groups according to the CGCS: low (L) <1 g/kg body weight (BW) and high (H) ≥1 g/kg BW, respectively. The control group (C) consisted of 70 healthy children. RANKL concentration was observed to be significantly higher and OPG significantly lower in INS children than in the reference group: 0.21 (range 0.01–1.36) versus 0.15 (0–1.42) pmol/l (p < 0.05), respectively, and 3.76 (1.01–7.25) versus 3.92 (2.39–10.23) pmol/l (p < 0.05), respectively. The RANKL/OPG ratio was significantly higher in INS children (p < 0.01). The concentration of RANKL, similar to the RANKL/OPG ratio, was significantly higher in Group H children than in Group L children: 0.46 (0.02–1.36 ) versus 0.19 (0.01–1.25) (p < 0.01) and 0.14 (0.01–0.71) versus 0.05 (0.002–0.37) (p < 0.01), respectively. The concentration of OPG was similar in both groups. There was a positive correlation between CGCS and the concentration of sRANKL as well as the RANKL/OPG ratio (in both cases r = 0.33, p < 0.05). Based on these results, we suggest that long-term exposure to GCS results in a dose-dependent increase in serum RANKL concentration and the RANKL/OPG ratio, but not in the level of serum OPG
    corecore