1,460 research outputs found

    Induced CMB quadrupole from pointing offsets

    Full text link
    Recent claims in the literature have suggested that the {\it WMAP} quadrupole is not primordial in origin, and arises from an aliasing of the much larger dipole field because of incorrect satellite pointing. We attempt to reproduce this result and delineate the key physics leading to the effect. We find that, even if real, the induced quadrupole would be smaller than claimed. We discuss reasons why the {\it WMAP} data are unlikely to suffer from this particular systematic effect, including the implications for observations of point sources. Given this evidence against the reality of the effect, the similarity between the pointing-offset-induced signal and the actual quadrupole then appears to be quite puzzling. However, we find that the effect arises from a convolution between the gradient of the dipole field and anisotropic coverage of the scan direction at each pixel. There is something of a directional conspiracy here -- the dipole signal lies close to the Ecliptic Plane, and its direction, together with the {\it WMAP} scan strategy, results in a strong coupling to the Y2,1Y_{2,\,-1} component in Ecliptic co-ordinates. The dominant strength of this component in the measured quadrupole suggests that one should exercise increased caution in interpreting its estimated amplitude. The {\it Planck} satellite has a different scan strategy which does not so directly couple the dipole and quadrupole in this way and will soon provide an independent measurement.Comment: 8 pages, 4 figure

    Constraints on cosmic hemispherical power anomalies from quasars

    Get PDF
    Recent analyses of the cosmic microwave background (CMB) maps from the WMAP satellite have uncovered evidence for a hemispherical power anomaly, i.e. a dipole modulation of the CMB power spectrum at large angular scales with an amplitude of +/-14 percent. Erickcek et al have put forward an inflationary model to explain this anomaly. Their scenario is a variation on the curvaton scenario in which the curvaton possesses a large-scale spatial gradient that modulates the amplitude of CMB fluctuations. We show that this scenario would also lead to a spatial gradient in the amplitude of perturbations sigma_8, and hence to a dipole asymmetry in any highly biased tracer of the underlying density field. Using the high-redshift quasars from the Sloan Digital Sky Survey, we find an upper limit on such a gradient of |nabla sigma_8|/sigma_8<0.027/r_{lss} (99% posterior probability), where r_{lss} is the comoving distance to the last-scattering surface. This rules out the simplest version of the curvaton spatial gradient scenario.Comment: matches JCAP accepted version (minor revisions

    Constraints from CMB in the intermediate Brans-Dicke inflation

    Full text link
    We study an intermediate inflationary stage in a Jordan-Brans-Dicke theory. In this scenario we analyze the quantum fluctuations corresponding to adiabatic and isocurvature modes. Our model is compared to that described by using the intermediate model in Einstein general relativity theory. We assess the status of this model in light of the seven-year WMAP data.Comment: 17 pages, 6 figure

    Tensors, non-Gaussianities, and the future of potential reconstruction

    Full text link
    We present projections for reconstruction of the inflationary potential expected from ESA's upcoming Planck Surveyor CMB mission. We focus on the effects that tensor perturbations and the presence of non-Gaussianities have on reconstruction efforts in the context of non-canonical inflation models. We consider potential constraints for different combinations of detection/null-detection of tensors and non-Gaussianities. We perform Markov Chain Monte Carlo and flow analyses on a simulated Planck-precision data set to obtain constraints. We find that a failure to detect non-Gaussianities precludes a successful inversion of the primordial power spectrum, greatly affecting uncertainties, even in the presence of a tensor detection. In the absence of a tensor detection, while unable to determine the energy scale of inflation, an observable level of non-Gaussianities provides correlations between the errors of the potential parameters, suggesting that constraints might be improved for suitable combinations of parameters. Constraints are optimized for a positive detection of both tensors and non-Gaussianities.Comment: 12 pages, 5 figures, LaTeX; V2: version submitted to JCA

    Inflation might be caused by the right

    Get PDF
    We show that the scalar field that drives inflation can have a dynamical origin, being a strongly coupled right handed neutrino condensate. The resulting model is phenomenologically tightly constrained, and can be experimentally (dis)probed in the near future. The mass of the right handed neutrino obtained this way (a crucial ingredient to obtain the right light neutrino spectrum within the see-saw mechanism in a complete three generation framework) is related to that of the inflaton and both completely determine the inflation features that can be tested by current and planned experiments.Comment: 15 pages, 4 figure

    Cosmological CPT Violation and CMB Polarization Measurements

    Full text link
    In this paper we study the possibility of testing Charge-Parity-Time Reversal (CPT) symmetry with cosmic microwave background (CMB) experiments. We consider two kinds of Chern-Simons (CS) term, electromagnetic CS term and gravitational CS term, and study their effects on the CMB polarization power spectra in detail. By combining current CMB polarization measurements, the seven-year WMAP, BOOMERanG 2003 and BICEP observations, we obtain a tight constraint on the rotation angle Δα=2.28±1.02\Delta\alpha=-2.28\pm1.02 deg (1σ1\,\sigma), indicating a 2.2σ2.2\,\sigma detection of the CPT violation. Here, we particularly take the systematic errors of CMB measurements into account. After adding the QUaD polarization data, the constraint becomes 1.34<Δα<0.82-1.34<\Delta\alpha<0.82 deg at 95% confidence level. When comparing with the effect of electromagnetic CS term, the gravitational CS term could only generate TB and EB power spectra with much smaller amplitude. Therefore, the induced parameter ϵ\epsilon can not be constrained from the current polarization data. Furthermore, we study the capabilities of future CMB measurements, Planck and CMBPol, on the constraints of Δα\Delta\alpha and ϵ\epsilon. We find that the constraint of Δα\Delta\alpha can be significantly improved by a factor of 15. Therefore, if this rotation angle effect can not be taken into account properly, the constraints of cosmological parameters will be biased obviously. For the gravitational CS term, the future Planck data still can not constrain ϵ\epsilon very well, if the primordial tensor perturbations are small, r<0.1r <0.1. We need the more accurate CMBPol experiment to give better constraint on ϵ\epsilon.Comment: 11 pages, 5 figures, 4 tables, Accepted for publication in JCA

    The High Redshift Integrated Sachs-Wolfe Effect

    Full text link
    In this paper we rely on the quasar (QSO) catalog of the Sloan Digital Sky Survey Data Release Six (SDSS DR6) of about one million photometrically selected QSOs to compute the Integrated Sachs-Wolfe (ISW) effect at high redshift, aiming at constraining the behavior of the expansion rate and thus the behaviour of dark energy at those epochs. This unique sample significantly extends previous catalogs to higher redshifts while retaining high efficiency in the selection algorithm. We compute the auto-correlation function (ACF) of QSO number density from which we extract the bias and the stellar contamination. We then calculate the cross-correlation function (CCF) between QSO number density and Cosmic Microwave Background (CMB) temperature fluctuations in different subsamples: at high z>1.5 and low z<1.5 redshifts and for two different choices of QSO in a conservative and in a more speculative analysis. We find an overall evidence for a cross-correlation different from zero at the 2.7\sigma level, while this evidence drops to 1.5\sigma at z>1.5. We focus on the capabilities of the ISW to constrain the behaviour of the dark energy component at high redshift both in the \LambdaCDM and Early Dark Energy cosmologies, when the dark energy is substantially unconstrained by observations. At present, the inclusion of the ISW data results in a poor improvement compared to the obtained constraints from other cosmological datasets. We study the capabilities of future high-redshift QSO survey and find that the ISW signal can improve the constraints on the most important cosmological parameters derived from Planck CMB data, including the high redshift dark energy abundance, by a factor \sim 1.5.Comment: 20 pages, 18 figures, and 7 table

    Constraints on the SZ Power Spectrum on Degree Angular Scales in WMAP Data

    Full text link
    The Sunyaev-Zel'dovich (SZ) effect has a distinct spectral signature that allows its separation from fluctuations in the cosmic microwave background (CMB) and foregrounds. Using CMB anisotropies measured in Wilkinson Microwave Anisotropy Probe's five-year maps, we constrain the SZ fluctuations at large, degree angular scales corresponding to multipoles in the range from 10 to 400. We provide upper bounds on SZ fluctuations at multipoles greater than 50, and find evidence for a hemispherically asymmetric signal at ten degrees angular scales. The amplitude of the detected signal cannot be easily explained with the allowed number density and temperature of electrons in the Galactic halo. We have failed to explain the excess signal as a residual from known Galactic foregrounds or instrumental uncertainties such as 1/f-noise.Comment: 14 pages, 3 figures, 2 tables. Simple typos fixe

    Dirac Born Infeld (DBI) Cosmic Strings

    Get PDF
    Motivated by brane physics, we consider the non-linear Dirac-Born-Infeld (DBI) extension of the Abelian-Higgs model and study the corresponding cosmic string configurations. The model is defined by a potential term, assumed to be of the mexican hat form, and a DBI action for the kinetic terms. We show that it is a continuous deformation of the Abelian-Higgs model, with a single deformation parameter depending on a dimensionless combination of the scalar coupling constant, the vacuum expectation value of the scalar field at infinity, and the brane tension. By means of numerical calculations, we investigate the profiles of the corresponding DBI-cosmic strings and prove that they have a core which is narrower than that of Abelian-Higgs strings. We also show that the corresponding action is smaller than in the standard case suggesting that their formation could be favoured in brane models. Moreover we show that the DBI-cosmic string solutions are non-pathological everywhere in parameter space. Finally, in the limit in which the DBI model reduces to the Bogomolnyi-Prasad-Sommerfield (BPS) Abelian-Higgs model, we find that DBI cosmic strings are no longer BPS: rather they have positive binding energy. We thus argue that, when they meet, two DBI strings will not bind with the corresponding formation of a junction, and hence that a network of DBI strings is likely to behave as a network of standard cosmic strings.Comment: 25 pages, 12 figure

    Constraining the time variation of the coupling constants from cosmic microwave background: effect of \Lambda_{QCD}

    Full text link
    We investigate constraints on the time variation of the fine structure constant between the recombination epoch and the present epoch, \Delta\alpha/\alpha \equiv (\alpha_{rec} - \alpha_{now})/\alpha_{now}, from cosmic microwave background (CMB) taking into account simultaneous variation of other physical constants, namely the electron mass m_{e} and the proton mass m_{p}. In other words, we consider the variation of Yukawa coupling and the QCD scale \Lambda_{QCD} in addition to the electromagnetic coupling. We clarify which parameters can be determined from CMB temperature anisotropy in terms of singular value decomposition. Assuming a relation among variations of coupling constants governed by a single scalar field (the dilaton), the 95% confidence level (C.L.) constraint on \Delta\alpha/\alpha is found to be -8.28 \times 10^{-3} < \Delta\alpha/\alpha < 1.81 \times 10^{-3}, which is tighter than the one obtained by considering only the change of \alpha and m_{e}. We also obtain the constraint on the time variation of the proton-to-electron mass ratio \mu \equiv m_{p}/m_{e} to be -0.52 < \Delta\mu/\mu < 0.17 (95% C.L.) under the same assumption. Finally, we also implement a forecast for constraints from the PLANCK survey.Comment: 25 pages, 4 figures; references adde
    corecore