228 research outputs found
Bacterial Bioluminescence Regulates Expression of a Host Cryptochrome Gene in the Squid-Vibrio Symbiosis
ABSTRACTThe symbiosis between the squid Euprymna scolopes and its luminous symbiont, Vibrio fischeri, is characterized by daily transcriptional rhythms in both partners and daily fluctuations in symbiont luminescence. In this study, we sought to determine whether symbionts affect host transcriptional rhythms. We identified two transcripts in host tissues (E. scolopes cry1 [escry1] and escry2) that encode cryptochromes, proteins that influence circadian rhythms in other systems. Both genes cycled daily in the head of the squid, with a pattern similar to that of other animals, in which expression of certain cry genes is entrained by environmental light. In contrast, escry1 expression cycled in the symbiont-colonized light organ with 8-fold upregulation coincident with the rhythms of bacterial luminescence, which are offset from the day/night light regime. Colonization of the juvenile light organ by symbionts was required for induction of escry1 cycling. Further, analysis with a mutant strain defective in light production showed that symbiont luminescence is essential for cycling of escry1; this defect could be complemented by presentation of exogenous blue light. However, blue-light exposure alone did not induce cycling in nonsymbiotic animals, but addition of molecules of the symbiont cell envelope to light-exposed animals did recover significant cycling activity, showing that light acts in synergy with other symbiont features to induce cycling. While symbiont luminescence may be a character specific to rhythms of the squid-vibrio association, resident microbial partners could similarly influence well-documented daily rhythms in other systems, such as the mammalian gut.IMPORTANCEIn mammals, biological rhythms of the intestinal epithelium and the associated mucosal immune system regulate such diverse processes as lipid trafficking and the immune response to pathogens. While these same processes are affected by the diverse resident microbiota, the extent to which these microbial communities control or are controlled by these rhythms has not been addressed. This study provides evidence that the presentation of three bacterial products (lipid A, peptidoglycan monomer, and blue light) is required for cyclic expression of a cryptochrome gene in the symbiotic organ. The finding that bacteria can directly influence the transcription of a gene encoding a protein implicated in the entrainment of circadian rhythms provides the first evidence for the role of bacterial symbionts in influencing, and perhaps driving, peripheral circadian oscillators in the host
In search of the authentic nation: landscape and national identity in Canada and Switzerland
While the study of nationalism and national identity has flourished in the last decade, little attention has been devoted to the conditions under which natural environments acquire significance in definitions of nationhood. This article examines the identity-forming role of landscape depictions in two polyethnic nation-states: Canada and Switzerland. Two types of geographical national identity are identified. The first – what we call the ‘nationalisation of nature’– portrays zarticular landscapes as expressions of national authenticity. The second pattern – what we refer to as the ‘naturalisation of the nation’– rests upon a notion of geographical determinism that depicts specific landscapes as forces capable of determining national identity. The authors offer two reasons why the second pattern came to prevail in the cases under consideration: (1) the affinity between wild landscape and the Romantic ideal of pure, rugged nature, and (2) a divergence between the nationalist ideal of ethnic homogeneity and the polyethnic composition of the two societies under consideration
Development and evolution of dentition pattern and tooth order in the Skates and Rays (Batoidea; Chondrichthyes)
Shark and ray (elasmobranch) dentitions are well known for their multiple generations of teeth, with isolated teeth being common in the fossil record. However, how the diverse dentitions characteristic of elasmobranchs form is still poorly understood. Data on the development and maintenance of the dental patterning in this major vertebrate group will allow comparisons to other morphologically diverse taxa, including the bony fishes, in order to identify shared pattern characters for the vertebrate dentition as a whole. Data is especially lacking from the Batoidea (skates and rays), hence our objective is to compile data on embryonic and adult batoid tooth development contributing to ordering of the dentition, from cleared and stained specimens and micro-CT scans, with 3D rendered models. We selected species (adult and embryonic) spanning phylogenetically significant batoid clades, such that our observations may raise questions about relationships within the batoids, particularly with respect to current molecular-based analyses. We include developmental data from embryos of recent model organisms Leucoraja erinacea and Raja clavata to evaluate the earliest establishment of the dentition. Characters of the batoid dentition investigated include alternate addition of teeth as offset successional tooth rows (versus single separate files), presence of a symphyseal initiator region (symphyseal tooth present, or absent, but with two parasymphyseal teeth) and a restriction to tooth addition along each jaw reducing the number of tooth families, relative to addition of successor teeth within each family. Our ultimate aim is to understand the shared characters of the batoids, and whether or not these dental characters are shared more broadly within elasmobranchs, by comparing these to dentitions in shark outgroups. These developmental morphological analyses will provide a solid basis to better understand dental evolution in these important vertebrate groups as well as the general plesiomorphic vertebrate dental condition
The Sail-Backed Reptile Ctenosauriscus from the Latest Early Triassic of Germany and the Timing and Biogeography of the Early Archosaur Radiation
Background
Archosaurs (birds, crocodilians and their extinct relatives including dinosaurs) dominated Mesozoic continental ecosystems from the Late Triassic onwards, and still form a major component of modern ecosystems (>10,000 species). The earliest diverse archosaur faunal assemblages are known from the Middle Triassic (c. 244 Ma), implying that the archosaur radiation began in the Early Triassic (252.3–247.2 Ma). Understanding of this radiation is currently limited by the poor early fossil record of the group in terms of skeletal remains.
Methodology/Principal Findings
We redescribe the anatomy and stratigraphic position of the type specimen of Ctenosauriscus koeneni (Huene), a sail-backed reptile from the Early Triassic (late Olenekian) Solling Formation of northern Germany that potentially represents the oldest known archosaur. We critically discuss previous biomechanical work on the ‘sail’ of Ctenosauriscus, which is formed by a series of elongated neural spines. In addition, we describe Ctenosauriscus-like postcranial material from the earliest Middle Triassic (early Anisian) Röt Formation of Waldhaus, southwestern Germany. Finally, we review the spatial and temporal distribution of the earliest archosaur fossils and their implications for understanding the dynamics of the archosaur radiation.
Conclusions/Significance
Comprehensive numerical phylogenetic analyses demonstrate that both Ctenosauriscus and the Waldhaus taxon are members of a monophyletic grouping of poposauroid archosaurs, Ctenosauriscidae, characterised by greatly elongated neural spines in the posterior cervical to anterior caudal vertebrae. The earliest archosaurs, including Ctenosauriscus, appear in the body fossil record just prior to the Olenekian/Anisian boundary (c. 248 Ma), less than 5 million years after the Permian–Triassic mass extinction. These earliest archosaur assemblages are dominated by ctenosauriscids, which were broadly distributed across northern Pangea and which appear to have been the first global radiation of archosaurs
Theropod Fauna from Southern Australia Indicates High Polar Diversity and Climate-Driven Dinosaur Provinciality
The Early Cretaceous fauna of Victoria, Australia, provides unique data on the composition of high latitude southern hemisphere dinosaurs. We describe and review theropod dinosaur postcranial remains from the Aptian–Albian Otway and Strzelecki groups, based on at least 37 isolated bones, and more than 90 teeth from the Flat Rocks locality. Several specimens of medium- and large-bodied individuals (estimated up to ∼8.5 metres long) represent allosauroids. Tyrannosauroids are represented by elements indicating medium body sizes (∼3 metres long), likely including the holotype femur of Timimus hermani, and a single cervical vertebra represents a juvenile spinosaurid. Single specimens representing medium- and small-bodied theropods may be referrable to Ceratosauria, Ornithomimosauria, a basal coelurosaur, and at least three taxa within Maniraptora. Thus, nine theropod taxa may have been present. Alternatively, four distinct dorsal vertebrae indicate a minimum of four taxa. However, because most taxa are known from single bones, it is likely that small-bodied theropod diversity remains underestimated. The high abundance of allosauroids and basal coelurosaurs (including tyrannosauroids and possibly ornithomimosaurs), and the relative rarity of ceratosaurs, is strikingly dissimilar to penecontemporaneous dinosaur faunas of Africa and South America, which represent an arid, lower-latitude biome. Similarities between dinosaur faunas of Victoria and the northern continents concern the proportional representatation of higher clades, and may result from the prevailing temperate–polar climate of Australia, especially at high latitudes in Victoria, which is similar to the predominant warm–temperate climate of Laurasia, but distinct from the arid climate zone that covered extensive areas of Gondwana. Most dinosaur groups probably attained a near-cosmopolitan distribution in the Jurassic, prior to fragmentation of the Pangaean supercontinent, and some aspects of the hallmark ‘Gondwanan’ fauna of South America and Africa may therefore reflect climate-driven provinciality, not vicariant evolution driven by continental fragmentation. However, vicariance may still be detected at lower phylogenetic levels
- …