1,205 research outputs found

    Overcoming data scarcity of Twitter: using tweets as bootstrap with application to autism-related topic content analysis

    Full text link
    Notwithstanding recent work which has demonstrated the potential of using Twitter messages for content-specific data mining and analysis, the depth of such analysis is inherently limited by the scarcity of data imposed by the 140 character tweet limit. In this paper we describe a novel approach for targeted knowledge exploration which uses tweet content analysis as a preliminary step. This step is used to bootstrap more sophisticated data collection from directly related but much richer content sources. In particular we demonstrate that valuable information can be collected by following URLs included in tweets. We automatically extract content from the corresponding web pages and treating each web page as a document linked to the original tweet show how a temporal topic model based on a hierarchical Dirichlet process can be used to track the evolution of a complex topic structure of a Twitter community. Using autism-related tweets we demonstrate that our method is capable of capturing a much more meaningful picture of information exchange than user-chosen hashtags.Comment: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 201

    Step by step procedures : degradation of polycyclic aromatic hydrocarbons in potable water using photo-Fenton oxidation process

    Get PDF
    Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds, composed of two or more fused benzene rings and abundantly found in mixed-use areas. Mixed-use areas consist of dense population, urbanization, industrial and agricultural activities. River pollution are common in mixed-use areas and 98% of Malaysia's fresh water supply originates from surface water. The biological degradation, adsorption and advanced oxidation process were documented as the available PAHs treatment for water. To date, the application of the photo-Fenton oxidation process has been reported for the treatment of PAHs from contaminated soil (review paper), landfill leachate, municipal solid waste leachate, sanitary landfill leachate, aniline wastewater, ammunition wastewater and saline aqueous solutions. As for potable water, the application of Fenton reagent was aided with photo treatment or electrolysis not focusing on PAHs removal. • The presented MethodsX was conducted for PAHs degradation analysis in potable water samples using photo-Fenton oxidation process. • The designed reactor for batch experiment is presented. • The batch experiment consists of parameters like concentration of 17 USEPA-PAHs in the prepared aqueous solution (fixed variable), reaction time, pH and molarity ratio of hydrogen peroxide (H2O2): ferrous sulfate (FeSO4)

    The covid-19 pandemic situation in Malaysia: lessons learned from the perspective of population density

    Get PDF
    This paper attempts to ascertain the impacts of population density on the spread and severity of COVID-19 in Malaysia. Besides describing the spatio-temporal contagion risk of the virus, ultimately, it seeks to test the hypothesis that higher population density results in exacerbated COVID-19 virulence in the community. The population density of 143 districts in Malaysia, as per data from Malaysia’s 2010 population census, was plotted against cumulative COVID-19 cases and infection rates of COVID-19 cases, which were obtained from Malaysia’s Ministry of Health official website. The data of these three variables were collected between 19 January 2020 and 31 December 2020. Based on the observations, districts that have high population densities and are highly inter-connected with neighbouring districts, whether geographically, socio-economically, or infrastructurally, tend to experience spikes in COVID-19 cases within weeks of each other. Using a parametric approach of the Pearson correlation, population density was found to have a moderately strong relationship to cumulative COVID-19 cases (p-value of 0.000 and R2 of 0.415) and a weak relationship to COVID-19 infection rates (p-value of 0.005 and R2 of 0.047). Consequently, we provide several non-pharmaceutical lessons, including urban planning strategies, as passive containment measures that may better support disease interventions against future contagious diseases

    Bitter Melon (Momordica charantia) Extract Inhibits Tumorigenicity and Overcomes Cisplatin-Resistance in Ovarian Cancer Cells Through Targeting AMPK Signaling Cascade

    Get PDF
    OBJECTIVE: Acquired chemoresistance is a major obstacle in the clinical management of ovarian cancer. Therefore, searching for alternative therapeutic modalities is urgently needed. Bitter melon (Momordica charantia) is a traditional dietary fruit, but its extract also shows potential medicinal values in human diabetes and cancers. Here, we sought to investigate the extract of bitter melon (BME) in antitumorigenic and cisplatin-induced cytotoxicity in ovarian cancer cells. METHODS: Three varieties of bitter melon were used to prepare the BME. Ovarian cancer cell lines, human immortalized epithelial ovarian cells (HOSEs), and nude mice were used to evaluate the cell cytotoxicity, cisplatin resistance, and tumor inhibitory effect of BME. The molecular mechanism of BME was examined by Western blotting. RESULTS: Cotreatment with BME and cisplatin markedly attenuated tumor growth in vitro and in vivo in a mouse xenograft model, whereas there was no observable toxicity in HOSEs or in nude mice in vivo. Interestingly, the antitumorigenic effects of BME varied with different varieties of bitter melon, suggesting that the amount of antitumorigenic substances may vary. Studies of the molecular mechanism demonstrated that BME activates AMP-activated protein kinase (AMPK) in an AMP-independent but CaMKK (Ca2+/calmodulin-dependent protein kinase)-dependent manner, exerting anticancer effects through activation of AMPK and suppression of the mTOR/p70S6K and/or the AKT/ERK/FOXM1 (Forkhead Box M1) signaling cascade. CONCLUSION: BME functions as a natural AMPK activator in the inhibition of ovarian cancer cell growth and might be useful as a supplement to improve the efficacy of cisplatin-based chemotherapy in ovarian cancer.published_or_final_versio

    A sustainable solution for diclofenac adsorption: Chitosan-modified fibrous silica KCC-1 adsorbent

    Get PDF
    This work aims to assess the potential of chitosan/fibrous silica KCC-1 composite in diclofenac adsorption. Fibrous silica KCC-1 was synthesized by microemulsion technique and chitosan/fibrous silica KCC-1 composite was prepared by ultrasound assisted impregnation. The physical and chemical properties were characterized by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), point zero charge (PZC) and N2 physisorption. The removal of diclofenac was analysed through ultraviolet-visible spectroscopy (UV-Vis) under different parameters such as contact time, pH value and initial concentration of diclofenac. The characterization results showed that chitosan/fibrous silica KCC-1 composite has an amorphous structure with dendritic morphology, good thermal stability, various functional groups such as amine and hydroxyl that act as the active site for diclofenac adsorption, large surface area of 510 m2/g and total pore size of 0.4922 cm3/g, as well as pHPZC at pH 4.6 for efficient removal of diclofenac. The results showed that chitosan/fibrous silica KCC-1 composite can interact and adsorb more diclofenac as compared to pure fibrous silica KCC-1. Chitosan/fibrous silica KCC-1 composite gives an adsorption capacity of 142.01 mg/g whereas fibrous silica KCC-1 gives an adsorption capacity of 65.33 mg/g under the optimum contact time at 40 min, pH value of 4.0 and initial concentration of diclofenac at 160 mg/L. Langmuir adsorption isotherm and Elovich kinetic model resulted to be the best fit for diclofenac adsorption by chitosan/fibrous silica KCC-1 composite with the R2 value of 0.9721 and 0.9597, respectively

    From Heisenberg matrix mechanics to EBK quantization: theory and first applications

    Full text link
    Despite the seminal connection between classical multiply-periodic motion and Heisenberg matrix mechanics and the massive amount of work done on the associated problem of semiclassical (EBK) quantization of bound states, we show that there are, nevertheless, a number of previously unexploited aspects of this relationship that bear on the quantum-classical correspondence. In particular, we emphasize a quantum variational principle that implies the classical variational principle for invariant tori. We also expose the more indirect connection between commutation relations and quantization of action variables. With the help of several standard models with one or two degrees of freedom, we then illustrate how the methods of Heisenberg matrix mechanics described in this paper may be used to obtain quantum solutions with a modest increase in effort compared to semiclassical calculations. We also describe and apply a method for obtaining leading quantum corrections to EBK results. Finally, we suggest several new or modified applications of EBK quantization.Comment: 37 pages including 3 poscript figures, submitted to Phys. Rev.

    The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures

    Get PDF
    Motivation: Biomarker discovery from high-dimensional data is a crucial problem with enormous applications in biology and medicine. It is also extremely challenging from a statistical viewpoint, but surprisingly few studies have investigated the relative strengths and weaknesses of the plethora of existing feature selection methods. Methods: We compare 32 feature selection methods on 4 public gene expression datasets for breast cancer prognosis, in terms of predictive performance, stability and functional interpretability of the signatures they produce. Results: We observe that the feature selection method has a significant influence on the accuracy, stability and interpretability of signatures. Simple filter methods generally outperform more complex embedded or wrapper methods, and ensemble feature selection has generally no positive effect. Overall a simple Student's t-test seems to provide the best results. Availability: Code and data are publicly available at http://cbio.ensmp.fr/~ahaury/
    • …
    corecore