4,829 research outputs found
Recommended from our members
Document Translation for Cross-Language Text Retrieval at the University of Maryland
The University of Maryland participated in three TREC-6 tasks: ad hoc retrieval, cross-language retrieval, and spoken document retrieval. The principal focus of the work was evaluation of a cross-language text retrieval technique based on fully automatic machine translation. The results show that approaches based on document translation can be approximately as effective as approaches based on query translation, but that additional work will be needed to develop a solid basis for choosing between the two in specific applications. Ad hoc and spoken document retrieval results are also presented
Neuronal Control of Swimming Behavior: Comparison of Vertebrate and Invertebrate Model Systems
Swimming movements in the leech and lamprey are highly analogous, and lack homology. Thus, similarities in mechanisms must arise from convergent evolution rather than from common ancestry. Despite over 40 years of parallel investigations into this annelid and primitive vertebrate, a close comparison of the approaches and results of this research is lacking. The present review evaluates the neural mechanisms underlying swimming in these two animals and describes the many similarities that provide intriguing examples of convergent evolution. Specifically, we discuss swim initiation, maintenance and termination, isolated nervous system preparations, neural-circuitry, central oscillators, intersegmental coupling, phase lags, cycle periods and sensory feedback. Comparative studies between species highlight mechanisms that optimize behavior and allow us a broader understanding of nervous system function
Effects of impingement of rocket exhaust gases and solid particles on a spacecraft Interim report, Mar. 18 - Oct. 25, 1966
Impingement damage to spacecraft from rocket exhaust gases and micron sized metal particle
Fusiform Rust Trends in East Texas: 1969-1987
Five surveys of pine plantations in East Texas over an 18-year period (1969-1987) indicated that fusiform rust (Cronartium quercuum [Berk.] Miyabe ex Shirai f. sp. fusiforme Birdsall and Snow) infection rates have increased to current levels of about 50% on slash pine (Pinus elliottii Engelm.) and are continuing to increase on loblolly pine (Pinus taeda L.) to 10-15% levels. South. J. Appl. For. 12(4):259-26
Chiral Extrapolation of Lattice Data for Heavy Baryons
The masses of heavy baryons containing a b quark have been calculated
numerically in lattice QCD with pion masses which are much larger than its
physical value. In the present work we extrapolate these lattice data to the
physical mass of the pion by applying the effective chiral Lagrangian for heavy
baryons, which is invariant under chiral symmetry when the light quark masses
go to zero and heavy quark symmetry when the heavy quark masses go to infinity.
A phenomenological functional form with three parameters, which has the correct
behavior in the chiral limit and appropriate behavior when the pion mass is
large, is proposed to extrapolate the lattice data. It is found that the
extrapolation deviates noticably from the naive linear extrapolation when the
pion mass is smaller than about 500MeV. The mass differences between Sigma_b
and Sigma_b^* and between Sigma_b^{(*)} and Lambda_b are also presented.
Uncertainties arising from both lattice data and our model parameters are
discussed in detail. We also give a comparision of the results in our model
with those obtained in the naive linear extrapolations.Comment: 29 pages, 9 figure
Project Cerberus: Flyby Mission to Pluto
The goal of the Cerberus Project was to design a feasible and cost-effective unmanned flyby mission to Pluto. The requirements in the request for proposal for an unmanned probe to Pluto are presented and were met. The design stresses proven technology that will avoid show stoppers which could halt mission progress. Cerberus also utilizes the latest advances in the spacecraft industry to meet the stringent demands of the mission. The topics covered include: (1) mission management, planning, and costing; (2) structures; (3) power and propulsion; (4) attitude, articulation, and control; (5) command, control, and communication; and (6) scientific instrumentation
Chiral Analysis of Quenched Baryon Masses
We extend to quenched QCD an earlier investigation of the chiral structure of
the masses of the nucleon and the delta in lattice simulations of full QCD.
Even after including the meson-loop self-energies which give rise to the
leading and next-to-leading non-analytic behaviour (and hence the most rapid
variation in the region of light quark mass), we find surprisingly little
curvature in the quenched case. Replacing these meson-loop self-energies by the
corresponding terms in full QCD yields a remarkable level of agreement with the
results of the full QCD simulations. This comparison leads to a very good
understanding of the origins of the mass splitting between these baryons.Comment: 23 pages, 6 figure
Self-regulation and social welfare: The political economy of corporate environmentalism
We extend the economic theory of regulation to allow for strategic self-regulation that preempts political action. When political "entry" is costly for consumer, firms can deter it through voluntary restraints. Unlike standard entry models, deterrence is achieved by over-investing to raise the rival's welfare in the event of entry. Empirical evidence on releases of toxic chemicals shows that an increased threat of regulation (as proxied by increased membership in conservation groups) indeed induces firms to reduce toxic releases. We establish conditions under which self-regulation, if it occurs, is a Pareto improvement once costs of influencing policy are included
Chiral Behaviour of the Rho Meson in Lattice QCD
In order to guide the extrapolation of the mass of the rho meson calculated
in lattice QCD with dynamical fermions, we study the contributions to its
self-energy which vary most rapidly as the quark mass approaches zero; from the
processes and . It turns out that in
analysing the most recent data from CP-PACS it is crucial to estimate the
self-energy from using the same grid of discrete momenta as
included implicitly in the lattice simulation. The correction associated with
the continuum, infinite volume limit can then be found by calculating the
corresponding integrals exactly. Our error analysis suggests that a factor of
10 improvement in statistics at the lowest quark mass for which data currently
exists would allow one to determine the physical rho mass to within 5%.
Finally, our analysis throws new light on a long-standing problem with the
J-parameter.Comment: 13 pages, 7 figures. Full analytic forms of the self-energies are
included and a correction in the omega-pi self-energ
Chiral extrapolation of lattice data for the hyperfine splittings of heavy mesons
Hyperfine splittings between the heavy vector (D*, B*) and pseudoscalar (D,
B) mesons have been calculated numerically in lattice QCD, where the pion mass
(which is related to the light quark mass) is much larger than its physical
value. Naive linear chiral extrapolations of the lattice data to the physical
mass of the pion lead to hyperfine splittings which are smaller than
experimental data. In order to extrapolate these lattice data to the physical
mass of the pion more reasonably, we apply the effective chiral perturbation
theory for heavy mesons, which is invariant under chiral symmetry when the
light quark masses go to zero and heavy quark symmetry when the heavy quark
masses go to infinity. This leads to a phenomenological functional form with
three parameters to extrapolate the lattice data. It is found that the
extrapolated hyperfine splittings are even smaller than those obtained using
linear extrapolation. We conclude that the source of the discrepancy between
lattice data for hyperfine splittings and experiment must lie in non-chiral
physics.Comment: 27 pages, 6 figure
- …
