50 research outputs found

    Annular fast electron transport in silicon arising from low-temperature resistivity

    Get PDF
    Fast electron transport in Si, driven by ultra-intense laser pulses, is investigated experimentally and via 3D hybrid-PIC simulations. A transition from a Gaussian-like to an annular fast electron beam profile is demonstrated and explained by resistively generated magnetic fields. The results highlight the potential to completely transform the beam transport pattern by tailoring the resistivity-temperature profile at temperatures as low as a few eV

    Control and optimization of a staged laser-wakefield accelerator

    Get PDF
    We report results of an experimental study of laser-wakefield acceleration of electrons, using a staged device based on a double-jet gas target that enables independent injection and acceleration stages. This novel scheme is shown to produce stable, quasi-monoenergetic, and tunable electron beams. We show that optimal accelerator performance is achieved by systematic variation of five critical parameters. For the injection stage, we show that the amount of trapped charge is controlled by the gas density, composition, and laser power. For the acceleration stage, the gas density and the length of the jet are found to determine the final electron energy. This independent control over both the injection and acceleration processes enabled independent control over the charge and energy of the accelerated electron beam while preserving the quasi-monoenergetic character of the beam. We show that the charge and energy can be varied in the ranges of 2–45 pC, and 50–450 MeV, respectively. This robust and versatile electron accelerator will find application in the generation of high-brightness and controllable x-rays, and as the injector stage for more conventional devices

    A family of dual-activity glycosyltransferasesphosphorylases mediates mannogen turnover and virulence in Leishmania parasites

    Get PDF
    Parasitic protists belonging to the genus Leishmania synthesize the non-canonical carbohydrate reserve, mannogen, which is composed of β-1,2-mannan oligosaccharides. Here, we identify a class of dual-activity mannosyltransferase/phosphorylases (MTPs) that catalyze both the sugar nucleotide-dependent biosynthesis and phosphorolytic turnover of mannogen. Structural and phylogenic analysis shows that while the MTPs are structurally related to bacterial mannan phosphorylases, they constitute a distinct family of glycosyltransferases (GT108) that have likely been acquired by horizontal gene transfer from gram-positive bacteria. The seven MTPs catalyze the constitutive synthesis and turnover of mannogen. This metabolic rheostat protects obligate intracellular parasite stages from nutrient excess, and is essential for thermotolerance and parasite infectivity in the mammalian host. Our results suggest that the acquisition and expansion of the MTP family in Leishmania increased the metabolic flexibility of these protists and contributed to their capacity to colonize new host niches

    Characterization of a cucumber [Cucumis sativus L.] somaclonal variant with paternal inheritance

    No full text
    Regeneration of cucumber plants from leaf explants resulted in a new species phenotype designated mosaic (msc). It is characterized by two types of spots on the leaves (zucchini-like and chlorophyllous) and has many altered morphological and physiological properties including slower growth, smaller organs, poorly germinating or empty seeds and a smaller number of flowers per node. In msc plants the shape of the first leaf is always altered, and in about 76% of the flowers the crown is reduced and distorted to a varying degree. Chloroplasts of the zucchini-like sectors are filled with large starch grains, and some of the embryos die at various stages of development. The msc phenotype is transmitted uniparentally only by the male plant and no segregation is observed in the F2 and subsequent generations. Possible mechanisms responsible for the msc phenotype and its transmission are discussed

    Transient expression assay for optimization of direct gene transfer into cucumber meristem protoplasts by electroporation

    No full text
    The paper presents a new way of obtaining viable and very homogeneous cucumber protoplasts. Protoplasts from cells formed in the shoot tip meristem culture were isolated from suspension. Plasmid pBI121 was introduced using impulse electric field. Effectiveness of transformation process was determined by the transient expression of ß-glucuronidase (GUS) gene, controlled by promotor 35S. The activity of ß-glucuronidase enzyme as a product of GUS reporter gene was estimated by fluorimetric method (JEFFERSON 1987). Parameters of electroporation process were optimized. The transient expression of GUS gene was measured 24 h after electroporation. The highest effectiveness of transformation process was achieved using three electric impulses at the initial voltage of 250-350 V at 10-sec. intervals as a result of discharging a 140 µF capacitor and 50-70 µg × cm⁻³ plasmid DNA in the presence of 50 µg × cm⁻³ carrier DNA. The system presented is an effective method of exogenic DNA transfer, which is indicated by a high transient expression of the reporter gene. In comparison to Agrobacterium tumefaciens and A. rhizogenes, this alternative method of gene transfer can be used for obtaining transgenic cucumber plants
    corecore