1,765 research outputs found

    Maximum entropy approach to power-law distributions in coupled dynamic-stochastic systems

    Full text link
    Statistical properties of coupled dynamic-stochastic systems are studied within a combination of the maximum information principle and the superstatistical approach. The conditions at which the Shannon entropy functional leads to a power-law statistics are investigated. It is demonstrated that, from a quite general point of view, the power-law dependencies may appear as a consequence of "global" constraints restricting both the dynamic phase space and the stochastic fluctuations. As a result, at sufficiently long observation times the dynamic counterpart is driven into a non-equilibrium steady state whose deviation from the usual exponential statistics is given by the distance from the conventional equilibrium

    Prospects for discovering supersymmetric long-lived particles with MoEDAL

    Full text link
    We present a study on the possibility of searching for long-lived supersymmetric partners with the MoEDAL experiment at the LHC. MoEDAL is sensitive to highly ionising objects such as magnetic monopoles or massive (meta)stable electrically charged particles. We focus on prospects of directly detecting long-lived sleptons in a phenomenologically realistic model which involves an intermediate neutral long-lived particle in the decay chain. This scenario is not yet excluded by the current data from ATLAS or CMS, and is compatible with astrophysical constraints. Using Monte Carlo simulation, we compare the sensitivities of MoEDAL versus ATLAS in scenarios where MoEDAL could provide discovery reach complementary to ATLAS and CMS, thanks to looser selection criteria combined with the virtual absence of background. It is also interesting to point out that, in such scenarios, in which charged staus are the main long-lived candidates, the relevant mass range for MoEDAL is compatible with a potential role of Supersymmetry in providing an explanation for the anomalous events observed by the ANITA detector.Comment: 12 pages, 6 figures; preliminary results presented in arXiv:1903.11022; matches published version in EPJ

    Universal Power Law in the Noise from a Crumpled Elastic Sheet

    Full text link
    Using high-resolution digital recordings, we study the crackling sound emitted from crumpled sheets of mylar as they are strained. These sheets possess many of the qualitative features of traditional disordered systems including frustration and discrete memory. The sound can be resolved into discrete clicks, emitted during rapid changes in the rough conformation of the sheet. Observed click energies range over six orders of magnitude. The measured energy autocorrelation function for the sound is consistent with a stretched exponential C(t) ~ exp(-(t/T)^{b}) with b = .35. The probability distribution of click energies has a power law regime p(E) ~ E^{-a} where a = 1. We find the same power law for a variety of sheet sizes and materials, suggesting that this p(E) is universal.Comment: 5 pages (revtex), 10 uuencoded postscript figures appended, html version at http://rainbow.uchicago.edu/~krame

    Cortical Auditory Adaptation in the Awake Rat and the Role of Potassium Currents

    Get PDF
    Responses to sound in the auditory cortex are influenced by the preceding history of firing. We studied the time course of auditory adaptation in primary auditory cortex (A1) from awake, freely moving rats. Two identical stimuli were delivered with different intervals ranging from 50 ms to 8 s. Single neuron recordings in the awake animal revealed that the response to a sound is influenced by sounds delivered even several seconds earlier, the second one usually yielding a weaker response. To understand the role of neuronal intrinsic properties in this phenomenon, we obtained intracellular recordings from rat A1 neurons in vitro and mimicked the same protocols of adaptation carried out in awake animals by means of depolarizing pulses of identical duration and intervals. The intensity of the pulses was adjusted such that the first pulse would evoke a similar number of spikes as its equivalent in vivo. A1 neurons in vitro adapted with a similar time course but less than in awake animals. At least two potassium currents participated in the in vitro adaptation: a Na +-dependent K + current and an apamin-sensitive K + current. Our results suggest that potassium currents underlie at least part of cortical auditory adaptation during the awake state.Fil: Abolafia, Juan M.. INSTITUTO DE INVESTIGACIONES BIOMEDICAS AUGUST PI I SUNYER (IDIBAPS);Fil: Vergara, Ramiro Oscar. INSTITUTO DE INVESTIGACIONES BIOMEDICAS AUGUST PI I SUNYER (IDIBAPS); . Consejo Superior de Investigaciones Científicas. Instituto de Neurociencia de Alicante; España. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Arnold, M. M.. Consejo Superior de Investigaciones Científicas. Instituto de Neurociencia de Alicante; España. INSTITUTO DE INVESTIGACIONES BIOMEDICAS AUGUST PI I SUNYER (IDIBAPS);Fil: Reig, R.. INSTITUTO DE INVESTIGACIONES BIOMEDICAS AUGUST PI I SUNYER (IDIBAPS);Fil: Sanchez Vives, M. V.. INSTITUTO DE INVESTIGACIONES BIOMEDICAS AUGUST PI I SUNYER (IDIBAPS)

    On the athermal character of structural phase transitions

    Get PDF
    The significance of thermal fluctuations on nucleation in structural first-order phase transitions has been examined. The prototype case of martensitic transitions has been experimentally investigated by means of acoustic emission techniques. We propose a model based on the mean first-passage time to account for the experimental observations. Our study provides a unified framework to establish the conditions for isothermal and athermal transitions to be observed.Comment: 5 pages, 4 figures, accepted in Phys. Rev. Let

    SUSY discovery prospects with MoEDAL

    Full text link
    We present a preliminary study on the possibility to search for massive long-lived electrically charged particles at the MoEDAL detector. MoEDAL is sensitive to highly ionising objects such as magnetic monopoles or massive (meta-)stable electrically charged particles and we focus on the latter in this paper. Requirements on triggering or reducing the cosmic-ray and cavern background, applied in the ATLAS and CMS analyses for long-lived particles, are not necessary at MoEDAL, due to its completely different detector design and extremely low background. On the other hand, MoEDAL requires slow-moving particles, resulting in sensitivity to massive states with typically small production cross sections. Using Monte Carlo simulations, we compare the sensitivities of MoEDAL versus ATLAS/CMS for various long-lived particles in supersymmetric models, and we seek a scenario where MoEDAL can provide discovery reach complementary to ATLAS and CMS.Comment: 8 pages, 5 figures; invited talk in 6th Symposium on Prospects in the Physics of Discrete Symmetries (DISCRETE 2018), 26-30 Nov 2018, Vienna, Austria, presented by V.A.M.; minor changes matching published versio

    Capillary condensation in disordered porous materials: hysteresis versus equilibrium behavior

    Full text link
    We study the interplay between hysteresis and equilibrium behavior in capillary condensation of fluids in mesoporous disordered materials via a mean-field density functional theory of a disordered lattice-gas model. The approach reproduces all major features observed experimentally. We show that the simple van der Waals picture of metastability fails due to the appearance of a complex free-energy landscape with a large number of metastable states. In particular, hysteresis can occur both with and without an underlying equilibrium transition, thermodynamic consistency is not satisfied along the hysteresis loop, and out-of-equilibrium phase transitions are possible.Comment: 4 pages, 4 figure
    corecore