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The Default Global State of the Cerebral Cortex [1]

Phenomenology

I Slow Oscillations (≤1Hz)
. at the neuron level (membrane

potential and firing rate)
. at the network level

(extracellular electrical
activity: LFP and MUA)

I Observed in:
. slow wave sleep
. deep anaesthesia
. deafferentation
. cortical slices

Key Features

I Bistability
. existence of two attractors:

UP state and DOWN state

I Intrinsic fluctuations between
these attractors

I Regularity of the UP/DOWN
states alternance

→ behaves as a relaxation oscillator

Figure 1: Slow oscillations recorded from the

frontal cortex of an anaesthetized mouse [1]

Advantages

I Resilience to perturbances:
. the relaxation-oscillator regime

acts as an equilibrium of the
network.

I Facilitation of the transition
towards more connected,
awake-like states.

Motivation

I Can we detect and characterize other global network states apart from the
SO regime?

Cortical Networks Parameters: Literature Review

In fact, the dynamics of the network states are not fully understood [3].
The stability of such states seems to be strongly influenced by:

I the input stimulus [4]

I the connectivity properties of the
network
. either unshaped or structured in

clusters [5]

I the excitatory-inhibitory balance
[6]

I the network architecture
. either predominantly feedforward

or recurrent [7]

I the kind of noise
. intrinsic or extrinsic [8]

Problem: Although multiple mechanistic hypotheses have been proposed
in models, the current analysis tools do not enable us to discern empirically
the dynamics of the network states.
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Cortical Slices Recordings

Figure 2: Cortical slice recording setup: (A) cortex, (B) white mat-

ter, (C) infragranular layers’ electrodes and (D) supragranular layers’

electrodes

Experimental Conditions [2]

I Pharmacological Modulations
. adding Carbachol (0.5 µM) +

Norepinephrine (50 µM)
. reducing extracellular Calcium (to 0.8-0.9

mM)
. Reducing temperature (to 31-32 ◦C)

I Electrical Stimuli
. 150 µA pulses every 10 s at layer 5.

Figure 3: Schematic of the 16-channel

SU-8-based flexible microprobe used for

the recordings

→ Experimental model to explore the transitions from a state of slow
oscillations towards a higher complexity state (awake-like asynchronous
state).

Figure 4: Example of extracellular activity (LFP and logMUA) issued from recordings at two different layers under

two different experimental conditions

Our Approach

Aims

I To identify the stability of the global network states in isolated cortical
networks under experimental manipulations that alter key network
parameters (excitability, input, connectivity, etc.).

I To develop a novel theoretical tool which empirically captures the
metastable regions of the network, i.e. transient states that temporarily
behave as attractors.

Methodology

I With the aid of kernel mean embedding techniques for clustering [9], we will
detect the convergence regions of the system.

I By studying how the phase portrait of the system evolves when the
slow-oscillation regime is perturbed, we will map the bifurcations or
transient states with the network parameters.
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