51 research outputs found

    Influence of somatic cell count and breed on capillary electrophoretic protein profiles of ewes’ milk: A chemometric study

    Get PDF
    Producción CientíficaBulk tank ewe milk from the Assaf, Castellana, and Churra breeds categorized into 3 somatic cell count (SCC) groups (2,500,000 cells/mL) was used to investigate changes in chemical composition and capillary electrophoresis protein profiles. The results obtained indicated that breed affected fat, protein, and total solids levels, and differences were also observed for the following milk proteins: β-, β1-, β2-, and αs1-III-casein, α-lactalbumin, and β-lactoglobulin. High SCC affected fat and protein contents and bacterial counts. The level of β1-, β2-, and αs1-I-casein, and α-lactalbumin were significantly lower in milk with SCC scores >2,500,000 cells/mL. A preliminary study of the chemical, microbiological, and electrophoretic data was performed by cluster analysis and principal components analysis. Applying discriminant analysis, it was possible to group the milk samples according to breed and level of SCC, obtaining a prediction of 100 and 97% of the samples, respectively.Junta de Castilla y León (Proyecto SA 066/04

    Effect of different physical pre-treatments on physicochemical and techno-functional properties, and on the antinutritional factors of lentils (Lens culinaris spp)

    Get PDF
    Lentils have a valuable physicochemical profile, which can be affected by the presence of antinutrients that may impair the benefits arising from their consumption. Different treatments can be used to reduce these undesirable compounds, although they can also affect the general composition and behaviour of the lentils. Thus, the effect of different processing methods on the physicochemical and techno-functional properties, as well as on the antinutritional factors of different lentil varieties was studied. Phytic acid was eliminated during germination, while tannins and trypsin inhibitors are mostly affected by cooking. Functional properties were also altered by processing, these being dependent on the concentration of different nutrients in lentils. All the studied treatments affected the physicochemical profile of lentils and their functional properties. Cooking and germination appear to be the most effective in reducing antinutritional factors and improving the physicochemical profile of the lentils, meeting the current nutritional demands of today's society.This work was supported by national funds through FCT/MCTES (PIDDAC): CIMO, UIDB/00690/2020 (DOI: 10.54499/UIDB/00690/20 20) and UIDP/00690/2020 (DOI: 10.54499/UIDP/00690/2020); and SusTEC, LA/P/0007/2020 (DOI: 10.54499/LA/P/0007/2020). The authors are also grateful to the national funding by FCT and PI in the form of the institutional scientific employment program for the contracts of L Barros and ˆA Fernandes, and the PhD fellowship (2021.04585.BD) of ˆA Liberal.info:eu-repo/semantics/publishedVersio

    Flavonoid and Antioxidant Capacity of Propolis Prediction Using Near Infrared Spectroscopy

    Get PDF
    [EN] The use of propolis as a dietary supplement or as an ingredient in different food products is increasing, due to its antioxidant and bactericidal properties. These nutritional properties directly depend on its phenolic composition. For this reason, this study analysed the total contents of flavones and flavonols, flavanones and dihydroflavonols, and the antioxidant capacity by using the methods of ABTS and linoleic acid/β-carotene in 99 samples of propolis from Spain and Chile. A rapid method was developed for quantifying these parameters in raw propolis using near infrared (NIR) spectroscopy with a remote reflectance fibre-optic probe applied directly to the ground-up sample. The models developed allow for the determination of the total flavones and flavonols (0–183 mg quercetin/g propolis and 0–72 mg rutin/g propolis), of the total flavanones and dihydroflavonols (9–109 mg pinocembrin/g propolis extract), and of its antioxidant capacity by the ABTS method based on the reduction of the 2.2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation(0–3212.6 nmol Trolox/mg of propolis) and of linoleic acid/β-carotene (22–86% inhibition). The NIR spectroscopy models were applied in external validation to different samples of the calibration group, which led to the conclusion that the methods developed provide significantly identical data to the initial chemical data of reference
    • …
    corecore