76 research outputs found
RF, THERMAL, AND STRUCTURAL FINITE ELEMENT ANALYSIS OF FREQUENCY QUADRUPOLE (RFQ)
ABSTRACT PXIE (Project X Injector Experiment) is a prototype front end system for the proposed Project X accelerator complex at Fermila
Recommended from our members
The Helium Cooling System and Cold Mass Support System for theMICE Coupling Solenoid
The MICE cooling channel consists of alternating threeabsorber focus coil module (AFC) and two RF coupling coil module (RFCC)where the process of muon cooling and reacceleration occurs. The RFCCmodule comprises a superconducting coupling solenoid mounted around fourconventional conducting 201.25 MHz closed RF cavities and producing up to2.2T magnetic field on the centerline. The coupling coil magnetic fieldis to produce a low muon beam beta function in order to keep the beamwithin the RF cavities. The magnet is to be built using commercialniobium titanium MRI conductors and cooled by pulse tube coolers thatproduce 1.5 W of cooling capacity at 4.2 K each. A self-centering supportsystem is applied for the coupling magnet cold mass support, which isdesigned to carry a longitudinal force up to 500 kN. This report willdescribe the updated design for the MICE coupling magnet. The cold masssupport system and helium cooling system are discussed indetail
Recommended from our members
Accelerator-Driven Neutron Source for Cargo Screening
Advanced neutron interrogation systems for the screening ofsea-land cargo containers for shielded special nuclear materials (SNM)require a high-yield neutron source to achieve the desired detectionprobability, false alarm rate, and throughput. An accelerator-drivenneutron source is described that produces a forward directed beam ofhigh-energy (up to 8.5 MeV) neutrons utilizing the D(d,n)3He reaction atdeuteron beam energies of up to 6 MeV. The key components of the neutronsource are a high-current RFQ accelerator and an innovative neutronproduction target. A microwave-driven deuteron source is coupled to anelectrostatic LEBT that injects a 40 mA D+-beam into a 6 MeV, 5.1meter-long, 200 MHz RFQ. The RFQ is based on an unusual beam dynamicsdesign and is capable of operating at a duty factor that produces morethan 1.2 mA timeaverage beam current. The beam is transported to a2-atmosphere deuterium gas target with a specially-designed, thinentrance window. A high-frequency dipole magnet is used to spread thebeam over the long dimension of the 4 by 35 cm target window. The sourcewill be capable of delivering a neutron flux of ~;2 x 107 n/(cm2 x s) tothe center of a sea-land cargo container and is expected t o satisfy therequirements for full testing and demonstration of advanced neutroninterrogation techniques based on stimulated SNM signatures
Recommended from our members
Preliminary Test Results for the MICE Spectrometer Superconducting Solenoids
This report describes the MICE spectrometer solenoids as built. Each magnet consists of five superconducting coils. Two coils are used to tune the beam going from or to the MICE spectrometer from the rest of the MICE cooling channel. Three spectrometer coils (two end coils and a long center coil) are used to create a uniform 4 T field (to {+-}0.3 percent) over a length of 1.0 m within a diameter of 0.3 m. The three-coil spectrometer set is connected in series. The two end coils use small power supplies to tune the uniform field region where the scintillating fiber tracker is located. This paper will present the results of the preliminary testing of the first spectrometer solenoid
Characterisation of the muon beams for the Muon Ionisation Cooling Experiment
A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.2–2.3 π mm-rad horizontally and 0.6–1.0 π mm-rad vertically, a horizontal dispersion of 90–190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE
Recommended from our members
The Design and Construction of the MICE Spectrometer Solenoids
The purpose of the MICE spectrometer solenoid is to provide a uniform field for a scintillating fiber tracker. The uniform field is produced by a long center coil and two short end coils. Together, they produce 4T field with a uniformity of better than 1% over a detector region of 1000 mm long and 300 mm in diameter. Throughout most of the detector region, the field uniformity is better than 0.3%. In addition to the uniform field coils, we have two match coils. These two coils can be independently adjusted to match uniform field region to the focusing coil field. The coil package length is 2544 mm. We present the spectrometer solenoid cold mass design, the powering and quench protection circuits, and the cryogenic cooling system based on using three cryocoolers with re-condensers
Recommended from our members
The Engineering Design of the 1.5 m Diameter Solenoid for the MICERFCC Modules
The RF coupling coil (RFCC) module of MICE is where muonsthat have been cooled within the MICE absorber focus (AFC) modules arere-accelerated to their original longitudinal momentum. The RFCC moduleconsists of four 201.25 MHz RF cavities in a 1.4 meter diameter vacuumvessel. The muons are kept within the RF cavities by the magnetic fieldgenerated by a superconducting coupling solenoid that goes around the RFcavities. The coupling solenoid will be cooled using a pair of 4 K pulsetube cooler that will generate 1.5 W of cooling at 4.2 K. The magnet willbe powered using a 300 A two-quadrant power supply. This report describesthe ICST engineering design of the coupling solenoid forMICE
MICE: The muon ionization cooling experiment. Step I: First measurement of emittance with particle physics detectors
Copyright @ 2011 APSThe Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) detectors was performed. The analysis of these data was recently completed and is discussed in this paper. Future steps for MICE, where beam emittance and emittance reduction (cooling) are to be measured with greater accuracy, are also presented.This work was supported by NSF grant PHY-0842798
- …