10 research outputs found
Differential Roles of TREM2+ Microglia in Anterograde and Retrograde Axonal Injury Models
Microglia are the main immune cells of the central nervous system (CNS), and they are devoted to the active surveillance of the CNS during homeostasis and disease. In the last years, the microglial receptor Triggering Receptor Expressed on Myeloid cells-2 (TREM2) has been defined to mediate several microglial functions, including phagocytosis, survival, proliferation, and migration, and to be a key regulator of a new common microglial signature induced under neurodegenerative conditions and aging, also known as disease-associated microglia (DAM). Although microglial TREM2 has been mainly studied in chronic neurodegenerative diseases, few studies address its regulation and functions in acute inflammatory injuries. In this context, the present work aims to study the regulation of TREM2 and its functions after reparative axonal injuries, using two-well established animal models of anterograde and retrograde neuronal degeneration: the perforant pathway transection (PPT) and the facial nerve axotomy (FNA). Our results indicate the appearance of a subpopulation of microglia expressing TREM2 after both anterograde and retrograde axonal injury. TREM2+ microglia were not directly related to proliferation, instead, they were associated with specific recognition and/or phagocytosis of myelin and degenerating neurons, as assessed by immunohistochemistry and flow cytometry. Characterization of TREM2+ microglia showed expression of CD16/32, CD68, and occasional Galectin-3. However, specific singularities within each model were observed in P2RY12 expression, which was only downregulated after PPT, and in ApoE, where de novo expression was detected only in TREM2+ microglia after FNA. Finally, we report that the pro-inflammatory or anti-inflammatory cytokine microenvironment, which may affect phagocytosis, did not directly modify the induction of TREM2+ subpopulation in any injury model, although it changed TREM2 levels due to modification of the microglial activation pattern. In conclusion, we describe a unique TREM2+ microglial subpopulation induced after axonal injury, which is directly associated with phagocytosis of specific cell remnants and show different phenotypes, depending on the microglial activation status and the degree of tissue injury
Phosphorylation-state dependent intraneuronal sorting of Aβ differentially impairs autophagy and the endo-lysosomal system.
peer reviewedAD: Alzheimer disease; APP: amyloid beta precursor protein; ATG: autophagy related; Aβ: amyloid-β; CTSD: cathepsin D; DAPI: 4',6-diamidino-2-phenylindole; EEA1: early endosome antigen 1; FA: formic acid; GFP: green fluorescent protein; LAMP2: lysosomal-associated membrane protein 2; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAP2: microtubule-associated protein 2; nmAβ: non-modified amyloid-β; npAβ: non-phosphorylated amyloid-β; pAβ: phosphorylated amyloid-β; p-Ser26Aβ: amyloid-β phosphorylated at serine residue 26; p-Ser8Aβ: amyloid-β phosphorylated at serine residue 8; RAB: RAB, member RAS oncogene family; RFP: red fluorescent protein; SQSTM1/p62: sequestome 1; YFP: yellow fluorescent protein
Differential interaction with TREM2 modulates microglial uptake of modified Aβ species.
Funder: Canadian Institutes of Health Research; Id: http://dx.doi.org/10.13039/501100000024Funder: Alzheimer's Association (Zenith Award)Funder: UK Alzheimer Society and ARUKFunder: Wellcome Trust Collaborative Award in ScienceRare coding variants of the microglial triggering receptor expressed on myeloid cells 2 (TREM2) confer an increased risk for Alzheimer's disease (AD) characterized by the progressive accumulation of aggregated forms of amyloid β peptides (Aβ). Aβ peptides are generated by proteolytic processing of the amyloid precursor protein (APP). Heterogeneity in proteolytic cleavages and additional post-translational modifications result in the production of several distinct Aβ variants that could differ in their aggregation behavior and toxic properties. Here, we sought to assess whether post-translational modifications of Aβ affect the interaction with TREM2. Biophysical and biochemical methods revealed that TREM2 preferentially interacts with oligomeric Aβ, and that phosphorylation of Aβ increases this interaction. Phosphorylation of Aβ also affected the TREM2 dependent interaction and phagocytosis by primary microglia and in APP transgenic mouse models. Thus, TREM2 function is important for sensing phosphorylated Aβ variants in distinct aggregation states and reduces the accumulation and deposition of these toxic Aβ species in preclinical models of Alzheimer's disease
Effects of astrocyte-targeted production of IL-6 and IL-10 after facial nerve axotomy in the adult mouse
Al SNC, la neuroinflamació és un procés desencadenat per varies circumstàncies incloent infeccions, toxicitat, lesió traumàtica o autoimmunitat i sempre implica la ràpida activació de les cèl·lules glials, en particular astròcits i micròglia. Com a major component del sistema immunitari al SNC, la micròglia juga un paper fonamental regulant la neuroinflamació. Un cop activada, la micròglia es transforma, prolifera, migra i secreta molècules immunomoduladores com les citoquines. A la mateixa vegada, les citoquines poden influenciar el fenotip microglial. Així, la IL-6 pot ser un potent inductor i modulador de l’activació microglial, mentre que la IL-10 pot reprimir el fenotip pro-inflamatori de la micròglia. Un dels models millor caracteritzats de lesió de nervi perifèric es la lesió del nervi facial (FNA), caracteritzada per la degeneració neuronal retrògrada, l’activació glial i el reclutament limfocític. Per entendre el paper de la IL-6 i la IL-10 en la regulació de la resposta inflamatòria després de FNA, utilitzem dos soques de ratolins transgènics, GFAP-IL6Tg i GFAP-IL10Tg, que produeixen les citoquines IL-6 i IL-10, respectivament, sota el promotor de GFAP en astròcits. Els nostres resultats demostren que després de FNA, la IL-6 té un lleu efecte atenuant l’activació astroglial, però indueix importants efectes en termes d’activació micròglia, que correlacionen amb una major mort neuronal. Així, trobem que la IL-6 augmenta la densitat microglial i modifica l’expressió de moltes molècules relacionades amb la comunicació cel·lular. La IL-6 produeix una baixada en les molècules d’adhesió microglial, les quals poden afectar la manera com la micròglia es comunica amb les neurones axotomitzades. Remarcablement, la IL-6 indueix menor formació de clústers microglials, qüestionant la noció de que aquests clústers corresponen a llocs de neurones degenerant-se i micròglia fagocítica. També, demostrem que la IL-6 provoca un augment en el nombre de limfòcits-T infiltrats al nucli facial. Tot i que la infiltració de limfòcits-T, especialment els Th2, es considera neuroprotectora en WT, podem especular que la IL-6 indueix el reclutament de limfòcits-T no-neuroprotectors i, per tant, es modificaria la supervivència neuronal. Malgrat els efectes detrimentals en supervivència neuronal als 21 dies, la IL-6 no continua augmentant la mort neuronal 7 setmanes desprès de FNA però sembla que empitjora la regeneració funcional efectiva a aquest temps. Per una altra banda, la IL-10 augmenta la supervivència neuronal comparada amb el WT, correlacionant amb canvis en la resposta microglial i immunitària. Remarcablement, la IL-10 provoca una major formació de clústers de micròglia, demostrant de nou que no hi ha correlació entre el nombre de clústers i la quantitat de mort neuronal. A més, la IL-10 disminueix l’expressió de molècules associades amb la fagocitosis microglial al principi de la lesió. Aquests resultats, conjuntament amb l’observat amb els animals GFAP-IL6Tg, ens duen a proposar que els clústers de micròglia poden tenir unes altres funcions, més enllà de la fagocitosis de residus neuronals. En aquest sentit, la IL-10 incrementa l’expressió de molècules coestimuladores en la micròglia dels clústers, senyalant aquestes estructures com a llocs d’interacció amb els limfòcits-T. Demostrem també que la IL-10 provoca un major reclutament de limfòcits-T al nucli facial, tot i que el mecanisme pel qual els limfòcits-T promouen la supervivència neuronal no ha estat encara aclarit. Malgrat els efectes beneficiosos en supervivència neuronal a 21 dies, la IL-10 no té efectes en aquesta ni en la regeneració funcional efectiva 7 setmanes desprès de FNA.
En resum, els resultats obtinguts en la present tesis mostren que la producció dirigida en astròcits de IL-6 i IL-10 modula la resposta neuroinflamatòria orquestrada desprès de FNA i influencien la supervivència neuronal i la regeneració del nervi.In the CNS, neuroinflammation is a process triggered by a variety of circumstances including infection, toxicity, traumatic injury or autoimmunity and as hallmark always involves the quick activation of glial cells, in particular astrocytes and microglia. As the prime component of the CNS immune system, microglia plays a major role regulating neuroinflammation. Once activated, microglial cells transform, proliferate, migrate and release immunomodulatory molecules like cytokines. In turn, cytokines can strongly influence microglial phenotype. In this sense, IL-6 can be a potent inducer and modulator of microglial activation while IL-10 can downregulate the pro-inflammatory phenotype of microglia. One of the most-well described models of peripheral nerve injury is facial nerve axotomy (FNA), characterized by retrograde neuronal degeneration, glial activation and lymphocyte recruitment. To understand the role of IL-6 and IL-10 in the orchestration of the inflammatory response after FNA, we used two transgenic mice, GFAP-IL6Tg and GFAP-IL10Tg, which produce the cytokines IL-6 and IL-10, respectively, under the GFAP promoter in astrocytes. Our results showed that after FNA, IL-6 elicited a slight effect on attenuating astroglial activation, but induced intensive effects in terms of microglial activation that correlated with a higher neuronal death. Thus, we found that IL-6 increased microglia density and modify the pattern of expression of several molecules related with cellular cross-talk. IL-6 produced a drop in microglial adhesion molecules, which may affect how microglia communicate with the lesioned motorneurons. Importantly, IL-6 led to less microglial cluster formation, calling in question the assumption that these clusters correspond just to places of dying neurons and phagocytic microglia. Also, our findings showed that IL-6 produced an increase in the number of infiltrated T-cell within the lesioned facial nucleus. Although infiltration of T-cells, specifically Th2 lymphocytes, has been reported to play a neuroprotective role in WT, we can speculate that IL-6 induced the recruitment of non-neuroprotective T-cells and therefore modify the outcome of lesioned motor neurons. Despite its detrimental effects in neuronal survival at 21 days, IL-6 did not continue increasing neuronal death 7 weeks after axotomy but seemed to impair effective functional regeneration at this time-point. On the other hand IL-10 promoted an increase in neuronal survival, in front to WT, correlating with changes in microglial and immune responses. Remarkably, IL-10 led to increased microglial clusters formation, showing again no correlation between the number of microglial clusters and the amount of neuronal death. Moreover, IL-10 decreased the expression of molecules associated with microglial phagocytosis during early time-points. These findings, together with the observations in GFAP-IL6Tg animals, lead us to propose that microglial clusters may have another functions rather than phagocytosis of neuronal debris. In this sense, IL-10 increased co-stimulatory molecule expression in clustering microglia, pointing to these clusters as locations of interaction with recruited lymphocytes. We showed that also IL-10 promoted the recruitment of T-cells into the facial nucleus, yet the mechanism by which infiltrated T-cells contribute to enhanced neuronal survival has not been yet elucidated. Despite its beneficial effects on neuronal survival at 21 days, IL-10 was not able to increase neither neuronal survival nor functional regeneration 7 weeks after FNA.
In summary, the results obtained in the present thesis show that astrocyte-targeted production of IL-6 and IL-10 modulates the neuroinflammatory response orchestrated after FNA and influence the neuronal survival and nerve regeneration
Effects of astrocyte-targeted production of IL-6 and IL-10 after facial nerve axotomy in the adult mouse
Al SNC, la neuroinflamació és un procés desencadenat per varies circumstàncies incloent infeccions, toxicitat, lesió traumàtica o autoimmunitat i sempre implica la ràpida activació de les cèl·lules glials, en particular astròcits i micròglia. Com a major component del sistema immunitari al SNC, la micròglia juga un paper fonamental regulant la neuroinflamació. Un cop activada, la micròglia es transforma, prolifera, migra i secreta molècules immunomoduladores com les citoquines. A la mateixa vegada, les citoquines poden influenciar el fenotip microglial. Així, la IL-6 pot ser un potent inductor i modulador de l’activació microglial, mentre que la IL-10 pot reprimir el fenotip pro-inflamatori de la micròglia. Un dels models millor caracteritzats de lesió de nervi perifèric es la lesió del nervi facial (FNA), caracteritzada per la degeneració neuronal retrògrada, l’activació glial i el reclutament limfocític. Per entendre el paper de la IL-6 i la IL-10 en la regulació de la resposta inflamatòria després de FNA, utilitzem dos soques de ratolins transgènics, GFAP-IL6Tg i GFAP-IL10Tg, que produeixen les citoquines IL-6 i IL-10, respectivament, sota el promotor de GFAP en astròcits. Els nostres resultats demostren que després de FNA, la IL-6 té un lleu efecte atenuant l’activació astroglial, però indueix importants efectes en termes d’activació micròglia, que correlacionen amb una major mort neuronal. Així, trobem que la IL-6 augmenta la densitat microglial i modifica l’expressió de moltes molècules relacionades amb la comunicació cel·lular. La IL-6 produeix una baixada en les molècules d’adhesió microglial, les quals poden afectar la manera com la micròglia es comunica amb les neurones axotomitzades. Remarcablement, la IL-6 indueix menor formació de clústers microglials, qüestionant la noció de que aquests clústers corresponen a llocs de neurones degenerant-se i micròglia fagocítica. També, demostrem que la IL-6 provoca un augment en el nombre de limfòcits-T infiltrats al nucli facial. Tot i que la infiltració de limfòcits-T, especialment els Th2, es considera neuroprotectora en WT, podem especular que la IL-6 indueix el reclutament de limfòcits-T no-neuroprotectors i, per tant, es modificaria la supervivència neuronal. Malgrat els efectes detrimentals en supervivència neuronal als 21 dies, la IL-6 no continua augmentant la mort neuronal 7 setmanes desprès de FNA però sembla que empitjora la regeneració funcional efectiva a aquest temps. Per una altra banda, la IL-10 augmenta la supervivència neuronal comparada amb el WT, correlacionant amb canvis en la resposta microglial i immunitària. Remarcablement, la IL-10 provoca una major formació de clústers de micròglia, demostrant de nou que no hi ha correlació entre el nombre de clústers i la quantitat de mort neuronal. A més, la IL-10 disminueix l’expressió de molècules associades amb la fagocitosis microglial al principi de la lesió. Aquests resultats, conjuntament amb l’observat amb els animals GFAP-IL6Tg, ens duen a proposar que els clústers de micròglia poden tenir unes altres funcions, més enllà de la fagocitosis de residus neuronals. En aquest sentit, la IL-10 incrementa l’expressió de molècules coestimuladores en la micròglia dels clústers, senyalant aquestes estructures com a llocs d’interacció amb els limfòcits-T. Demostrem també que la IL-10 provoca un major reclutament de limfòcits-T al nucli facial, tot i que el mecanisme pel qual els limfòcits-T promouen la supervivència neuronal no ha estat encara aclarit. Malgrat els efectes beneficiosos en supervivència neuronal a 21 dies, la IL-10 no té efectes en aquesta ni en la regeneració funcional efectiva 7 setmanes desprès de FNA.
En resum, els resultats obtinguts en la present tesis mostren que la producció dirigida en astròcits de IL-6 i IL-10 modula la resposta neuroinflamatòria orquestrada desprès de FNA i influencien la supervivència neuronal i la regeneració del nervi.In the CNS, neuroinflammation is a process triggered by a variety of circumstances including infection, toxicity, traumatic injury or autoimmunity and as hallmark always involves the quick activation of glial cells, in particular astrocytes and microglia. As the prime component of the CNS immune system, microglia plays a major role regulating neuroinflammation. Once activated, microglial cells transform, proliferate, migrate and release immunomodulatory molecules like cytokines. In turn, cytokines can strongly influence microglial phenotype. In this sense, IL-6 can be a potent inducer and modulator of microglial activation while IL-10 can downregulate the pro-inflammatory phenotype of microglia. One of the most-well described models of peripheral nerve injury is facial nerve axotomy (FNA), characterized by retrograde neuronal degeneration, glial activation and lymphocyte recruitment. To understand the role of IL-6 and IL-10 in the orchestration of the inflammatory response after FNA, we used two transgenic mice, GFAP-IL6Tg and GFAP-IL10Tg, which produce the cytokines IL-6 and IL-10, respectively, under the GFAP promoter in astrocytes. Our results showed that after FNA, IL-6 elicited a slight effect on attenuating astroglial activation, but induced intensive effects in terms of microglial activation that correlated with a higher neuronal death. Thus, we found that IL-6 increased microglia density and modify the pattern of expression of several molecules related with cellular cross-talk. IL-6 produced a drop in microglial adhesion molecules, which may affect how microglia communicate with the lesioned motorneurons. Importantly, IL-6 led to less microglial cluster formation, calling in question the assumption that these clusters correspond just to places of dying neurons and phagocytic microglia. Also, our findings showed that IL-6 produced an increase in the number of infiltrated T-cell within the lesioned facial nucleus. Although infiltration of T-cells, specifically Th2 lymphocytes, has been reported to play a neuroprotective role in WT, we can speculate that IL-6 induced the recruitment of non-neuroprotective T-cells and therefore modify the outcome of lesioned motor neurons. Despite its detrimental effects in neuronal survival at 21 days, IL-6 did not continue increasing neuronal death 7 weeks after axotomy but seemed to impair effective functional regeneration at this time-point. On the other hand IL-10 promoted an increase in neuronal survival, in front to WT, correlating with changes in microglial and immune responses. Remarkably, IL-10 led to increased microglial clusters formation, showing again no correlation between the number of microglial clusters and the amount of neuronal death. Moreover, IL-10 decreased the expression of molecules associated with microglial phagocytosis during early time-points. These findings, together with the observations in GFAP-IL6Tg animals, lead us to propose that microglial clusters may have another functions rather than phagocytosis of neuronal debris. In this sense, IL-10 increased co-stimulatory molecule expression in clustering microglia, pointing to these clusters as locations of interaction with recruited lymphocytes. We showed that also IL-10 promoted the recruitment of T-cells into the facial nucleus, yet the mechanism by which infiltrated T-cells contribute to enhanced neuronal survival has not been yet elucidated. Despite its beneficial effects on neuronal survival at 21 days, IL-10 was not able to increase neither neuronal survival nor functional regeneration 7 weeks after FNA.
In summary, the results obtained in the present thesis show that astrocyte-targeted production of IL-6 and IL-10 modulates the neuroinflammatory response orchestrated after FNA and influence the neuronal survival and nerve regeneration
Microglia: You'll Never Walk Alone!
peer reviewedIn this issue of Immunity, Mrdjen et al. (2018) use high-dimensional single-cell proteomics and high parametric mass cytometry to provide insight into the long-lasting issue of how to identify and characterize both resident and recruited leukocyte populations in healthy, aged, and diseased CNS
Microglia in Alzheimer's disease: Local heroes!
peer reviewedIn this issue of JEM, Reed-Geaghan et al. (https://doi.org/10.1084/jem.20191374) address the long-standing question about the primary source of myeloid cells located at β-amyloid deposits. Using genetic labeling experiments, the authors identify resident microglia as the only myeloid cells present at β-amyloid deposits
Effects of astrocyte-targeted production of either IL-6 and IL-10 after facial nerve axotomy in the adult mouse
Al SNC, la neuroinflamació és un procés desencadenat per varies circumstàncies incloent infeccions, toxicitat, lesió traumàtica o autoimmunitat i sempre implica la ràpida activació de les cèl·lules glials, en particular astròcits i micròglia. Com a major component del sistema immunitari al SNC, la micròglia juga un paper fonamental regulant la neuroinflamació. Un cop activada, la micròglia es transforma, prolifera, migra i secreta molècules immunomoduladores com les citoquines. A la mateixa vegada, les citoquines poden influenciar el fenotip microglial. Així, la IL-6 pot ser un potent inductor i modulador de l'activació microglial, mentre que la IL-10 pot reprimir el fenotip pro-inflamatori de la micròglia. Un dels models millor caracteritzats de lesió de nervi perifèric es la lesió del nervi facial (FNA), caracteritzada per la degeneració neuronal retrògrada, l'activació glial i el reclutament limfocític. Per entendre el paper de la IL-6 i la IL-10 en la regulació de la resposta inflamatòria després de FNA, utilitzem dos soques de ratolins transgènics, GFAP-IL6Tg i GFAP-IL10Tg, que produeixen les citoquines IL-6 i IL-10, respectivament, sota el promotor de GFAP en astròcits. Els nostres resultats demostren que després de FNA, la IL-6 té un lleu efecte atenuant l'activació astroglial, però indueix importants efectes en termes d'activació micròglia, que correlacionen amb una major mort neuronal. Així, trobem que la IL-6 augmenta la densitat microglial i modifica l'expressió de moltes molècules relacionades amb la comunicació cel·lular. La IL-6 produeix una baixada en les molècules d'adhesió microglial, les quals poden afectar la manera com la micròglia es comunica amb les neurones axotomitzades. Remarcablement, la IL-6 indueix menor formació de clústers microglials, qüestionant la noció de que aquests clústers corresponen a llocs de neurones degenerant-se i micròglia fagocítica. També, demostrem que la IL-6 provoca un augment en el nombre de limfòcits-T infiltrats al nucli facial. Tot i que la infiltració de limfòcits-T, especialment els Th2, es considera neuroprotectora en WT, podem especular que la IL-6 indueix el reclutament de limfòcits-T no-neuroprotectors i, per tant, es modificaria la supervivència neuronal. Malgrat els efectes detrimentals en supervivència neuronal als 21 dies, la IL-6 no continua augmentant la mort neuronal 7 setmanes desprès de FNA però sembla que empitjora la regeneració funcional efectiva a aquest temps. Per una altra banda, la IL-10 augmenta la supervivència neuronal comparada amb el WT, correlacionant amb canvis en la resposta microglial i immunitària. Remarcablement, la IL-10 provoca una major formació de clústers de micròglia, demostrant de nou que no hi ha correlació entre el nombre de clústers i la quantitat de mort neuronal. A més, la IL-10 disminueix l'expressió de molècules associades amb la fagocitosis microglial al principi de la lesió. Aquests resultats, conjuntament amb l'observat amb els animals GFAP-IL6Tg, ens duen a proposar que els clústers de micròglia poden tenir unes altres funcions, més enllà de la fagocitosis de residus neuronals. En aquest sentit, la IL-10 incrementa l'expressió de molècules coestimuladores en la micròglia dels clústers, senyalant aquestes estructures com a llocs d'interacció amb els limfòcits-T. Demostrem també que la IL-10 provoca un major reclutament de limfòcits-T al nucli facial, tot i que el mecanisme pel qual els limfòcits-T promouen la supervivència neuronal no ha estat encara aclarit. Malgrat els efectes beneficiosos en supervivència neuronal a 21 dies, la IL-10 no té efectes en aquesta ni en la regeneració funcional efectiva 7 setmanes desprès de FNA. En resum, els resultats obtinguts en la present tesis mostren que la producció dirigida en astròcits de IL-6 i IL-10 modula la resposta neuroinflamatòria orquestrada desprès de FNA i influencien la supervivència neuronal i la regeneració del nervi.In the CNS, neuroinflammation is a process triggered by a variety of circumstances including infection, toxicity, traumatic injury or autoimmunity and as hallmark always involves the quick activation of glial cells, in particular astrocytes and microglia. As the prime component of the CNS immune system, microglia plays a major role regulating neuroinflammation. Once activated, microglial cells transform, proliferate, migrate and release immunomodulatory molecules like cytokines. In turn, cytokines can strongly influence microglial phenotype. In this sense, IL-6 can be a potent inducer and modulator of microglial activation while IL-10 can downregulate the pro-inflammatory phenotype of microglia. One of the most-well described models of peripheral nerve injury is facial nerve axotomy (FNA), characterized by retrograde neuronal degeneration, glial activation and lymphocyte recruitment. To understand the role of IL-6 and IL-10 in the orchestration of the inflammatory response after FNA, we used two transgenic mice, GFAP-IL6Tg and GFAP-IL10Tg, which produce the cytokines IL-6 and IL-10, respectively, under the GFAP promoter in astrocytes. Our results showed that after FNA, IL-6 elicited a slight effect on attenuating astroglial activation, but induced intensive effects in terms of microglial activation that correlated with a higher neuronal death. Thus, we found that IL-6 increased microglia density and modify the pattern of expression of several molecules related with cellular cross-talk. IL-6 produced a drop in microglial adhesion molecules, which may affect how microglia communicate with the lesioned motorneurons. Importantly, IL-6 led to less microglial cluster formation, calling in question the assumption that these clusters correspond just to places of dying neurons and phagocytic microglia. Also, our findings showed that IL-6 produced an increase in the number of infiltrated T-cell within the lesioned facial nucleus. Although infiltration of T-cells, specifically Th2 lymphocytes, has been reported to play a neuroprotective role in WT, we can speculate that IL-6 induced the recruitment of non-neuroprotective T-cells and therefore modify the outcome of lesioned motor neurons. Despite its detrimental effects in neuronal survival at 21 days, IL-6 did not continue increasing neuronal death 7 weeks after axotomy but seemed to impair effective functional regeneration at this time-point. On the other hand IL-10 promoted an increase in neuronal survival, in front to WT, correlating with changes in microglial and immune responses. Remarkably, IL-10 led to increased microglial clusters formation, showing again no correlation between the number of microglial clusters and the amount of neuronal death. Moreover, IL-10 decreased the expression of molecules associated with microglial phagocytosis during early time-points. These findings, together with the observations in GFAP-IL6Tg animals, lead us to propose that microglial clusters may have another functions rather than phagocytosis of neuronal debris. In this sense, IL-10 increased co-stimulatory molecule expression in clustering microglia, pointing to these clusters as locations of interaction with recruited lymphocytes. We showed that also IL-10 promoted the recruitment of T-cells into the facial nucleus, yet the mechanism by which infiltrated T-cells contribute to enhanced neuronal survival has not been yet elucidated. Despite its beneficial effects on neuronal survival at 21 days, IL-10 was not able to increase neither neuronal survival nor functional regeneration 7 weeks after FNA. In summary, the results obtained in the present thesis show that astrocyte-targeted production of IL-6 and IL-10 modulates the neuroinflammatory response orchestrated after FNA and influence the neuronal survival and nerve regeneration
TREM2 modulates differential deposition of modified and non-modified Aβ species in extracellular plaques and intraneuronal deposits
Progressive accumulation of Amyloid-β (Aβ) deposits in the brain is a characteristic neuropathological hallmark of Alzheimer's disease (AD). During disease progression, extracellular Aβ plaques undergo specific changes in their composition by the sequential deposition of different modified Aβ species. Microglia are implicated in the restriction of amyloid deposits and play a major role in internalization and degradation of Aβ. Recent studies showed that rare variants of the Triggering Receptor Expressed on Myeloid cells 2 (TREM2) are associated with an increased risk for AD. Post-translational modifications of Aβ could modulate the interaction with TREM2, and the uptake by microglia. Here, we demonstrate that genetic deletion of TREM2 or expression of a disease associated TREM2 variant in mice lead to differential accumulation of modified and non-modified Aβ species in extracellular plaques and intraneuronal deposits. Human brains with rare TREM2 AD risk variants also showed altered deposition of modified Aβ species in the different brain lesions as compared to cases with the common variant of TREM2. These findings indicate that TREM2 plays a critical role in the development and the composition of Aβ deposits, not only in extracellular plaques, but also intraneuronally, that both could contribute to the pathogenesis of AD
Alterations in microglial phenotype and hippocampal neuronal function in transgenic mice with astrocyte-targeted production of interleukin-10
Interleukin-10 (IL-10) is a cytokine classically linked with anti-inflammatory and protective functions in the central nervous system (CNS) in different neurodegenerative and neuroinflammatory conditions. In order to study the specific role of local CNS produced IL-10, we have created a new transgenic mouse line with astrocyte-targeted production of IL-10 (GFAP-IL10Tg). In the present study, the effects of local CNS IL-10 production on microglia, astrocytes and neuronal connectivity under basal conditions were investigated using immunohistochemistry, molecular biology techniques, electrophysiology and behavioural studies. Our results showed that, in GFAP-IL10Tg animals, microglia displayed an increase in density and a specific activated phenotype characterised by morphological changes in specific areas of the brain including the hippocampus, cortex and cerebellum that correlated with the level of transgene expressed IL-10 mRNA. Distinctively, in the hippocampus, microglial cells adopted an elongated morphology following the same direction as the dendrites of pyramidal neurons. Moreover, this IL-10-induced microglial phenotype showed increased expression of certain molecules including Iba1, CD11b, CD16/32 and F4/80 markers, "de novo" expression of CD150 and no detectable levels of either CD206 or MHCII. To evaluate whether this specific activated microglial phenotype was associated with changes in neuronal activity, the electrophysiological properties of pyramidal neurons of the hippocampus (CA3-CA1) were analysed in vivo. We found a lower excitability of the CA3-CA1 synapses and absence of long-term potentiation (LTP) in GFAP-IL10Tg mice. This study is the first description of a transgenic mouse with astrocyte-targeted production of the cytokine IL-10. The findings indicate that IL-10 induces a specific activated microglial phenotype concomitant with changes in hippocampal LTP responses. This transgenic animal will be a very useful tool to study IL-10 functions in the CNS, not only under basal conditions, but also after different experimental lesions or induced diseases